This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300406 #23 Sep 08 2022 08:46:20 %S A300406 53,3329,13313,13631489,3489660929,62864142619960717084721153, %T A300406 5100145160001678120616578906356228963083163798627028041729, %U A300406 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329,1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969 %N A300406 Primes of the form 13*2^n + 1. %C A300406 For the corresponding exponents n see A032356. %H A300406 Ray Ballinger, Wilfried Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k*2^n + 1 for k < 300</a>. %F A300406 a(n) = A168596(A032356(n)). - _Michel Marcus_, Mar 29 2018 %p A300406 a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL): %p A300406 seq(a(n,13), n=1..316); %t A300406 Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* _Vincenzo Librandi_, Mar 06 2018 *) %o A300406 (Magma) [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // _Vincenzo Librandi_, Mar 06 2018 %o A300406 (GAP) Filtered(List([1..500],n->13*2^n + 1),IsPrime); # _Muniru A Asiru_, Mar 06 2018 %o A300406 (PARI) lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", ")));} \\ _Altug Alkan_, Mar 29 2018 %Y A300406 Cf. A019434, A039687, A032356, A050527, A050528, A050529, A173236, A195745, A050526, A300407, A300408. %K A300406 nonn %O A300406 1,1 %A A300406 _Martin Renner_, Mar 05 2018