This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300409 #15 Feb 16 2025 08:33:53 %S A300409 1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,2,3,1,1,1,2,1,1,1,2,1,2,2,2,1,1, %T A300409 1,2,1,2,1,3,1,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,2,1,1,3,1,2,1,3,1,1,1,2, %U A300409 1,2,1,2,1,1,1,3,1,1,1,3,1,1,1,2,2,1,1,2,1,2,1,3,2,1,2,2,1,1,1,3 %N A300409 Number of centered triangular numbers dividing n. %H A300409 Robert Israel, <a href="/A300409/b300409.txt">Table of n, a(n) for n = 1..10000</a> %H A300409 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a>. %H A300409 <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a>. %F A300409 G.f.: Sum_{k>=0} x^(3*k*(k+1)/2+1)/(1 - x^(3*k*(k+1)/2+1)). %F A300409 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A306324 = 1.5670651... . - _Amiram Eldar_, Jan 02 2024 %e A300409 a(20) = 3 because 20 has 6 divisors {1, 2, 4, 5, 10, 20} among which 3 divisors {1, 4, 10} are centered triangular numbers. %p A300409 N:= 100: # for a(1)..a(N) %p A300409 V:= Vector(N,1): %p A300409 for k from 1 do %p A300409 m:= 3*k*(k+1)/2+1; %p A300409 if m > N then break fi; %p A300409 r:= [seq(i,i=m..N,m)]; %p A300409 V[r]:= map(t->t+1, V[r]); %p A300409 od: %p A300409 convert(V,list); # _Robert Israel_, Mar 05 2018 %t A300409 nmax = 100; Rest[CoefficientList[Series[Sum[x^(3 k (k + 1)/2 + 1)/(1 - x^(3 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]] %Y A300409 Cf. A005448, A007862, A279495, A300410, A306324. %K A300409 nonn %O A300409 1,4 %A A300409 _Ilya Gutkovskiy_, Mar 05 2018