This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300410 #13 Feb 16 2025 08:33:53 %S A300410 1,1,1,1,2,1,1,1,1,2,1,1,2,1,2,1,1,1,1,2,1,1,1,1,3,2,1,1,1,2,1,1,1,1, %T A300410 2,1,1,1,2,2,2,1,1,1,2,1,1,1,1,3,1,2,1,1,2,1,1,1,1,2,2,1,1,1,3,1,1,1, %U A300410 1,2,1,1,1,1,3,1,1,2,1,2,1,2,1,1,3,1,1,1,1,2,2,1,1,1,2,1,1,1,1,3 %N A300410 Number of centered square numbers dividing n. %H A300410 Robert Israel, <a href="/A300410/b300410.txt">Table of n, a(n) for n = 1..10000</a> %H A300410 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredSquareNumber.html">Centered Square Number</a>. %H A300410 <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a>. %F A300410 G.f.: Sum_{k>=0} x^(2*k*(k+1)+1)/(1 - x^(2*k*(k+1)+1)). %F A300410 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A228048 = 1.440659... . - _Amiram Eldar_, Jan 02 2024 %e A300410 a(26) = 2 because 26 has 4 divisors {1, 2, 13, 26} among which 2 divisors {1, 13} are centered square numbers. %p A300410 N:= 100: # for a(1)..a(N) %p A300410 V:= Vector(N,1): %p A300410 for k from 1 do %p A300410 m:= 2*k*(k+1)+1; %p A300410 if m > N then break fi; %p A300410 r:= [seq(i,i=m..N,m)]; %p A300410 V[r]:= map(t->t+1, V[r]); %p A300410 od: %p A300410 convert(V,list); # _Robert Israel_, Mar 05 2018 %t A300410 nmax = 100; Rest[CoefficientList[Series[Sum[x^(2 k (k + 1) + 1)/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]] %Y A300410 Cf. A001844, A046951, A228048, A279496, A300409. %K A300410 nonn %O A300410 1,5 %A A300410 _Ilya Gutkovskiy_, Mar 05 2018