A300416 Number of prime Eisenstein integers z = x - y*w^2 with |z| <= n and where w = -1/2 + i*sqrt(3)/2 is a primitive cube root of unity.
0, 2, 4, 6, 9, 11, 15, 17, 23, 25, 30, 34, 40, 44, 50, 54, 61, 65, 71, 79, 87, 91, 98, 104, 114, 122, 128, 138, 147, 155, 161, 171, 183, 193, 199, 209, 217, 225, 237, 249, 262, 276, 286, 296, 308, 318, 331, 345, 359, 365, 377, 391, 410, 418, 428
Offset: 1
Keywords
Examples
a(7)=15 because the Eisenstein primes whose modulus <= 7 are 1-w^2, 1-2w^2, 1-3w^2, 1-5w^2, 1-6w^2, 2, 2-w^2, 2-3w^2, 3-w^2, 3-2w^2, 3-4w^2, 4-3w^2, 5, 5-w^2, 6-w^2.
Links
- Eric Weisstein's World of Mathematics, Eisenstein prime
- Wikipedia, Eisenstein integer.
Programs
-
Mathematica
a[n_] := Module[{w2=-1/2-I*Sqrt[3]/2, lst={}, x, y, z, Nz}, Do[z=x-w2*y; Nz=x^2+x*y+y^2; If[y==0&&Mod[Sqrt[Nz], 3]==2&&Sqrt[Nz]<=n&&PrimeQ[Sqrt[Nz]], AppendTo[lst, {x, y}], If[Mod[Nz, 3]!=2&&Sqrt[Nz]<=n&&PrimeQ[Nz], AppendTo[lst, {x, y}]]], {x, 0, n}, {y, 0, n}]; Length@lst]; Array[a, 100]
Comments