cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300417 Expansion of Product_{k>=1} (1 + x^(k*(k+1)/2))^2.

This page as a plain text file.
%I A300417 #7 Mar 05 2018 17:24:32
%S A300417 1,2,1,2,4,2,3,6,3,4,10,8,5,10,11,8,14,16,11,18,22,18,23,22,22,34,31,
%T A300417 26,39,40,33,50,56,36,53,74,51,62,86,68,77,98,86,88,102,106,120,130,
%U A300417 120,136,157,134,157,194,155,182,241,194,196,256,237,236,288,282,273,324
%N A300417 Expansion of Product_{k>=1} (1 + x^(k*(k+1)/2))^2.
%C A300417 Number of partitions of n into distinct triangular parts (A000217), with 2 types of each part.
%C A300417 Self-convolution of A024940.
%H A300417 Vaclav Kotesovec, <a href="/A300417/b300417.txt">Table of n, a(n) for n = 0..10000</a>
%H A300417 <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F A300417 G.f.: Product_{k>=1} (1 + x^A000217(k))^2.
%F A300417 a(n) ~ exp(3*Pi^(1/3) * ((sqrt(2)-1) * Zeta(3/2)/2)^(2/3) * n^(1/3)) * ((sqrt(2)-1) * Zeta(3/2) / (2*Pi))^(1/3) / (4*sqrt(3) * n^(5/6)). - _Vaclav Kotesovec_, Mar 05 2018
%t A300417 nmax = 65; CoefficientList[Series[Product[(1 + x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A300417 Cf. A000217, A022567, A024940, A279226, A298435.
%K A300417 nonn
%O A300417 0,2
%A A300417 _Ilya Gutkovskiy_, Mar 05 2018