cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300441 Number of the integers 4^k*(4*u(m)^2+1) (k,m = 0,1,2,...) such that n^2 - 4^k*(4*u(m)^2+1) can be written as the sum of two squares, where u(0) = 0, u(1) = 1, and u(j+1) = 4*u(j) - u(j-1) for j = 1,2,3,....

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 3, 2, 3, 1, 3, 1, 3, 4, 4, 3, 5, 3, 3, 2, 4, 3, 3, 1, 5, 3, 3, 1, 6, 3, 4, 4, 5, 4, 4, 3, 6, 5, 4, 3, 5, 3, 4, 2, 5, 4, 5, 3, 4, 3, 5, 1, 5, 5, 3, 3, 3, 3, 5, 1, 5, 6, 3, 3, 6, 4, 4, 4, 6, 5, 5, 4, 6, 4, 5, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 2^k*m (k = 0,1,2,... and m = 1, 7).
This curious conjecture indicates that any positive square can be written as (2^k)^2 + (2^(k+1)*u(m))^2 + x^2 + y^2 with k,m,x,y nonnegative integers. In the 2017 JNT paper, the author proved that each n = 1,2,3,... can be written as 4^k*(1+4*x^2+y^2)+z^2 with k,x,y,z nonnegative integers.
We have verified that a(n) > 0 for all n = 1..10^7.

Examples

			a(1) = 1 since 1^2 - 4^0*(4*u(0)^2+1) = 1 is 1^2 + 0^2.
a(5) = 3 since 5^2 - 4^0*(4*u(1)^2+1) = 20 = 4^2 + 2^2, 5^2 - 4^1*(4*u(1)^2+1) = 5 = 2^2 + 1^2, and 5^2 - 4^2*(4*u(0)^2+1) = 9 = 3^2 + 0^2.
a(7) = 1 since 7^2 - 4^1*(4*u(0)^2+1) = 45 = 6^2 + 3^2.
		

Crossrefs

Programs

  • Mathematica
    u[0]=0;
    u[1]=1;
    u[n_]:=u[n]=4u[n-1]-u[n-2];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[If[Mod[Part[Part[f[n],i],1]-3,4]==0&&Mod[Part[Part[f[n],i],2],2]==1,1,0],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    tab={};Do[r=0;Do[m=0;Label[cc];If[4u[m]^2+1>n^2/4^k,Goto[bb]];If[QQ[n^2-4^k*(4u[m]^2+1)],r=r+1,m=m+1;Goto[cc]];
    Label[bb],{k,0,Log[2,n]}];tab=Append[tab,r],{n,1,80}];Print[tab]