cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.

This page as a plain text file.
%I A300454 #49 Feb 16 2025 08:33:53
%S A300454 0,1,2,1,0,3,4,1,0,5,8,3,0,7,14,9,2,0,9,22,21,10,2,0,11,32,41,30,12,2,
%T A300454 0,13,44,71,70,42,14,2,0,15,58,113,140,112,56,16,2,0,17,74,169,252,
%U A300454 252,168,72,18,2,0,19,92,241,420,504,420,240,90,20,2,0
%N A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.
%C A300454 Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.
%C A300454 Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.
%C A300454 The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*<T>(A,B,x), where <T>(A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).
%D A300454 Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.
%H A300454 Agnijo Banerjee, <a href="http://agnijomaths.com/categories/geometry/topology/knot_theory.html">Knot theory</a>.
%H A300454 Răzvan Gelca and Fumikazu Nagasato,<a href="https://doi.org/10.1142/S0218216506004968">Some results about the kauffman bracket skein module of the twist knot exterior</a>, J. Knot Theory Ramifications 15 (2006), 1095-1106.
%H A300454 L. H. Kauffman, <a href="https://doi.org/10.1016/0040-9383(87)90009-7">State models and the Jones polynomial</a>, Topology, Vol. 26 (1987), 395-407.
%H A300454 Kelsey Lafferty, <a href="https://scholar.rose-hulman.edu/rhumj/vol14/iss2/7">The three-variable bracket polynomial for reduced, alternating links</a>, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14: Iss. 2, Article 7 (2013).
%H A300454 Franck Ramaharo, <a href="https://arxiv.org/abs/1712.06543">Enumerating the states of the twist knot</a>, arXiv preprint arXiv:1712.06543 [math.CO], 2017.
%H A300454 Franck Ramaharo, <a href="https://arxiv.org/abs/1807.05256">A one-variable bracket polynomial for some Turk's head knots</a>, arXiv:1807.05256 [math.CO], 2018.
%H A300454 Franck Ramaharo, <a href="https://arxiv.org/abs/1902.08989">A generating polynomial for the two-bridge knot with Conway's notation C(n,r)</a>, arXiv:1902.08989 [math.CO], 2019.
%H A300454 Alexander Stoimenow, <a href="https://doi.org/10.1016/j.jalgebra.2006.11.031">Generating functions, Fibonacci numbers and rational knots</a>, Journal of Algebra, Volume 310, Issue 2 (2007), 491-525.
%H A300454 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BracketPolynomial.html">Bracket Polynomial</a>.
%H A300454 Wikipedia, <a href="https://en.wikipedia.org/wiki/Twist_knot">Twist knot</a>.
%F A300454 T(n,1) = A005408(n).
%F A300454 T(n,2) = A014206(n).
%F A300454 T(n,3) = A064999(n+1).
%F A300454 T(n,1) + T(n,2) = A002061(n+2).
%F A300454 T(n,1) + T(n,3) = A046127(n+1).
%F A300454 T(n,2) + T(n,3) = A155753(n+1).
%F A300454 T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
%F A300454 T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
%F A300454 T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.
%F A300454 G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).
%e A300454 The triangle T(n,k) begins
%e A300454 n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14
%e A300454 0:   0   1    2    1
%e A300454 1:   0   3    4    1
%e A300454 2:   0   5    8    3
%e A300454 3:   0   7   14    9     2
%e A300454 4:   0   9   22   21    10     2
%e A300454 5:   0  11   32   41    30    12     2
%e A300454 6:   0  13   44   71    70    42    14     2
%e A300454 7:   0  15   58  113   140   112    56    16     2
%e A300454 8:   0  17   74  169   252   252   168    72    18     2
%e A300454 9:   0  19   92  241   420   504   420   240    90    20     2
%e A300454 10:  0  21  112  331   660   924   924   660   330   110    22    2
%e A300454 11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2
%e A300454 12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2
%e A300454 13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2
%o A300454 (Maxima)
%o A300454 P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
%o A300454 T : []$
%o A300454 for i:0 thru 20 do
%o A300454   T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
%o A300454 T;
%o A300454 (PARI) row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
%o A300454 tabl(nn) = for (n=0, nn, print(row(n))); \\ _Michel Marcus_, Mar 12 2018
%Y A300454 Row sums: A020707(Pisot sequences).
%Y A300454 Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).
%Y A300454 Cf. A002061, A005408, A007318, A014206, A028326, A028326, A046127, A046127, A046127, A064999, A155753, A299989, A300454, A300454.
%K A300454 nonn,tabf
%O A300454 0,3
%A A300454 _Franck Maminirina Ramaharo_, Mar 06 2018