cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300456 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).

This page as a plain text file.
%I A300456 #10 Aug 26 2019 06:15:38
%S A300456 1,2,16,200,3264,65752,1565744,42878432,1324344832,45464289482,
%T A300456 1715228012048,70471268834936,3129746696619072,149318596196238328,
%U A300456 7612660420021177200,412865831480749700928,23725813528034949148672,1439701175150489313314864,91967625580609006328344400,6167733266497532499924699672
%N A300456 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).
%H A300456 Vaclav Kotesovec, <a href="/A300456/b300456.txt">Table of n, a(n) for n = 0..377</a>
%F A300456 a(n) ~ exp(2*sqrt(2*n) - 1) * n^(n - 3/4) / (2^(3/4)*sqrt(Pi)). - _Vaclav Kotesovec_, Aug 26 2019
%e A300456 The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
%e A300456 n = 0: (1),  0,    0,    0,     0,       0,  ...
%e A300456 n = 1:  1,  (2),   4,    8,    14,      24,  ...
%e A300456 n = 2:  1,   4,  (16),  60,   208,     692,  ...
%e A300456 n = 3:  1,   6,   36, (200), 1038,    5160   ...
%e A300456 n = 4:  1,   8,   64,  472, (3264),  21608,  ...
%e A300456 n = 5:  1,  10,  100,  920,  7950,  (65752), ...
%t A300456 Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
%Y A300456 Cf. A015128, A252654, A261519, A261520, A270919, A270923, A270924, A292805, A300457, A300458.
%K A300456 nonn
%O A300456 0,2
%A A300456 _Ilya Gutkovskiy_, Mar 06 2018