cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).

This page as a plain text file.
%I A300457 #5 Mar 06 2018 17:50:46
%S A300457 1,-1,-3,-1,25,624,9871,170470,3027249,55077245,979330606,15079702923,
%T A300457 94670678245,-7958168036625,-626145997536240,-34564907982551791,
%U A300457 -1733699815491494303,-84294315853736719077,-4067859614343931897505,-196552300464314521511610,-9519733465269825759734169
%N A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).
%e A300457 The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins:
%e A300457 n = 0: (1),  0,    0,    0,   0,     0,  ...
%e A300457 n = 1:  1, (-1),  -1,    0,   0,     1,  ...
%e A300457 n = 2:  1,  -2,  (-3),   0,   2,    12,  ...
%e A300457 n = 3:  1,  -3,   -6,  (-1),  9,    63,  ...
%e A300457 n = 4:  1,  -4,  -10,   -4, (25),  224,  ...
%e A300457 n = 5:  1,  -5,  -15,  -10,  55,  (624), ...
%t A300457 Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%Y A300457 Cf. A010815, A008705, A252654, A252782, A255672, A270917, A270922, A281266, A281267, A281268, A283333, A292805, A300456, A300458.
%K A300457 sign
%O A300457 0,3
%A A300457 _Ilya Gutkovskiy_, Mar 06 2018