This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300457 #5 Mar 06 2018 17:50:46 %S A300457 1,-1,-3,-1,25,624,9871,170470,3027249,55077245,979330606,15079702923, %T A300457 94670678245,-7958168036625,-626145997536240,-34564907982551791, %U A300457 -1733699815491494303,-84294315853736719077,-4067859614343931897505,-196552300464314521511610,-9519733465269825759734169 %N A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k). %e A300457 The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins: %e A300457 n = 0: (1), 0, 0, 0, 0, 0, ... %e A300457 n = 1: 1, (-1), -1, 0, 0, 1, ... %e A300457 n = 2: 1, -2, (-3), 0, 2, 12, ... %e A300457 n = 3: 1, -3, -6, (-1), 9, 63, ... %e A300457 n = 4: 1, -4, -10, -4, (25), 224, ... %e A300457 n = 5: 1, -5, -15, -10, 55, (624), ... %t A300457 Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}] %Y A300457 Cf. A010815, A008705, A252654, A252782, A255672, A270917, A270922, A281266, A281267, A281268, A283333, A292805, A300456, A300458. %K A300457 sign %O A300457 0,3 %A A300457 _Ilya Gutkovskiy_, Mar 06 2018