cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).

This page as a plain text file.
%I A300458 #4 Mar 06 2018 17:50:52
%S A300458 1,-1,-1,-10,11,374,9792,183847,3469427,65038049,1195396233,
%T A300458 19667738452,189089161562,-6219720781782,-606316892131934,
%U A300458 -35104997710496175,-1795953382595105853,-88223902016631657740,-4283800987347611165184,-207864171877269042498096,-10102590396625592962089500
%N A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).
%e A300458 The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
%e A300458 n = 0: (1),  0,    0,    0,   0,     0,  ...
%e A300458 n = 1:  1, (-1),   0,   -1,   1,    -1,  ...
%e A300458 n = 2:  1,  -2,  (-1),  -4,   3,    -2,  ...
%e A300458 n = 3:  1,  -3,   -3, (-10),  6,    15,  ...
%e A300458 n = 4:  1,  -4,   -6,  -20, (11),  104,  ...
%e A300458 n = 5:  1,  -5,  -10,  -35,  20,  (374), ...
%t A300458 Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%Y A300458 Cf. A081362, A252654, A255526, A252782, A255672, A270917, A270922, A281266, A281267, A281268, A283333, A292805, A300456, A300457.
%K A300458 sign
%O A300458 0,4
%A A300458 _Ilya Gutkovskiy_, Mar 06 2018