This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300458 #4 Mar 06 2018 17:50:52 %S A300458 1,-1,-1,-10,11,374,9792,183847,3469427,65038049,1195396233, %T A300458 19667738452,189089161562,-6219720781782,-606316892131934, %U A300458 -35104997710496175,-1795953382595105853,-88223902016631657740,-4283800987347611165184,-207864171877269042498096,-10102590396625592962089500 %N A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k). %e A300458 The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins: %e A300458 n = 0: (1), 0, 0, 0, 0, 0, ... %e A300458 n = 1: 1, (-1), 0, -1, 1, -1, ... %e A300458 n = 2: 1, -2, (-1), -4, 3, -2, ... %e A300458 n = 3: 1, -3, -3, (-10), 6, 15, ... %e A300458 n = 4: 1, -4, -6, -20, (11), 104, ... %e A300458 n = 5: 1, -5, -10, -35, 20, (374), ... %t A300458 Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}] %Y A300458 Cf. A081362, A252654, A255526, A252782, A255672, A270917, A270922, A281266, A281267, A281268, A283333, A292805, A300456, A300457. %K A300458 sign %O A300458 0,4 %A A300458 _Ilya Gutkovskiy_, Mar 06 2018