A300460 Number of nX3 0..1 arrays with every element equal to 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
0, 2, 2, 8, 22, 68, 212, 652, 2017, 6225, 19229, 59393, 183451, 566633, 1750167, 5405795, 16697038, 51572664, 159294072, 492016422, 1519706056, 4693962286, 14498384074, 44781599826, 138318289075, 427227905079, 1319591820767
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..1 ..0..0..0. .0..1..1. .0..0..0. .0..0..1. .0..1..1. .0..0..1. .0..1..1 ..1..1..0. .1..1..1. .1..1..0. .0..1..1. .0..0..1. .0..1..1. .0..1..1 ..1..0..0. .0..0..1. .1..1..0. .1..1..0. .0..1..1. .0..0..1. .0..0..0 ..0..0..0. .0..1..1. .1..0..0. .1..0..0. .1..1..1. .0..1..1. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A300465.
Formula
Empirical: a(n) = 2*a(n-1) +2*a(n-2) +3*a(n-3) +a(n-4) +8*a(n-5) +4*a(n-6) -5*a(n-7) -11*a(n-8) +6*a(n-9) -2*a(n-10) -7*a(n-11) -a(n-12) +4*a(n-13) -4*a(n-14) +a(n-15)
Comments