cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300469 Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A300469 #4 Mar 06 2018 11:38:56
%S A300469 16,401,5363,80914,1231578,18735889,284885784,4332278363,65881928079,
%T A300469 1001882710812,15235864361246,231695322340487,3523444515242366,
%U A300469 53581838868285278,814831465529877300,12391331299090081281
%N A300469 Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C A300469 Column 5 of A300472.
%H A300469 R. H. Hardin, <a href="/A300469/b300469.txt">Table of n, a(n) for n = 1..210</a>
%F A300469 Empirical: a(n) = 17*a(n-1) -25*a(n-2) -81*a(n-3) +812*a(n-4) -1456*a(n-5) -2373*a(n-6) +9052*a(n-7) -4328*a(n-8) -35843*a(n-9) -126490*a(n-10) +529366*a(n-11) -372938*a(n-12) -1463695*a(n-13) +3880140*a(n-14) -4201537*a(n-15) -64467*a(n-16) -49909637*a(n-17) +101634894*a(n-18) +32591128*a(n-19) -282518813*a(n-20) +385942732*a(n-21) -790441603*a(n-22) +1407344220*a(n-23) -1110766093*a(n-24) +1076124597*a(n-25) -1249565509*a(n-26) +1621200774*a(n-27) -295679519*a(n-28) +289265669*a(n-29) +335943644*a(n-30) -740188593*a(n-31) +805266359*a(n-32) -155431714*a(n-33) -583221843*a(n-34) +312519183*a(n-35) -530943649*a(n-36) +513632872*a(n-37) -188455454*a(n-38) -165435389*a(n-39) +249871316*a(n-40) -51321046*a(n-41) -53981301*a(n-42) +61029765*a(n-43) -25843476*a(n-44) +286940*a(n-45) +2031723*a(n-46) -1981630*a(n-47) -562629*a(n-48) +722837*a(n-49) +100236*a(n-50) -133805*a(n-51) +113965*a(n-52) +107837*a(n-53) -88923*a(n-54) +46128*a(n-55) -15410*a(n-56) +3048*a(n-57) -216*a(n-58) for n>59
%e A300469 Some solutions for n=5
%e A300469 ..0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1
%e A300469 ..0..1..1..1..0. .1..1..0..0..1. .0..1..0..1..1. .1..0..1..0..1
%e A300469 ..0..0..0..1..0. .0..1..1..0..0. .0..1..0..1..0. .0..1..1..0..0
%e A300469 ..1..1..0..1..1. .0..0..0..1..1. .1..1..0..0..1. .1..0..1..1..1
%e A300469 ..0..0..1..0..0. .0..1..1..0..0. .0..1..1..0..1. .0..1..0..0..1
%Y A300469 Cf. A300472.
%K A300469 nonn
%O A300469 1,1
%A A300469 _R. H. Hardin_, Mar 06 2018