cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300484 a(n) = 2 * Integral_{t>=0} T_n(t/2+1) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

This page as a plain text file.
%I A300484 #12 Mar 08 2018 12:56:18
%S A300484 2,3,8,29,130,697,4376,31607,258690,2368847,24011832,267025409,
%T A300484 3233119106,42346123861,596617706344,8998126507307,144651872924162,
%U A300484 2469279716419035,44609768252582312,850345380011532261,17056474009400181122
%N A300484 a(n) = 2 * Integral_{t>=0} T_n(t/2+1) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
%C A300484 For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = A102761(n)*exp(2) - a(n)*exp(-2).
%F A300484 a(n) = Sum_{i=0..n} A127672(n,i) * A010842(i).
%F A300484 a(n) = A300480(2,n) = A300481(-2,n).
%F A300484 a(n) = Sum_{m=0..n} A156995(n,m) = 2*n*Sum_{m=0..n} binomial(2*n-m, m)*(n-m)!/(2*n-m).
%o A300484 (PARI) { A300484(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+2)/2)), x, 1); }
%Y A300484 Row m=2 in A300480.
%Y A300484 Row sums of A156995.
%Y A300484 Cf. A102761, A300482, A300483, A300485.
%K A300484 nonn
%O A300484 0,1
%A A300484 _Max Alekseyev_, Mar 06 2018