This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300486 #28 Aug 29 2018 02:52:13 %S A300486 1,2,3,4,7,8,15,18,28,35,56,64,101,120,168,210,297,348,490,583,776, %T A300486 946,1255,1482,1952,2335,2981,3581,4565,5387,6842,8119,10086,12013, %U A300486 14863,17527,21637,25525,31083,36695,44583,52256,63261,74171,88932,104303,124754 %N A300486 Number of relatively prime or monic partitions of n. %C A300486 A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime). %H A300486 Andrew Howroyd, <a href="/A300486/b300486.txt">Table of n, a(n) for n = 1..1000</a> %H A300486 A. David Christopher and M. Davamani Christober, <a href="http://emis.impa.br/EMIS/journals/GMN/yahoo_site_admin/assets/docs/1_GMN-2492-V13N2.77213831.pdf">Relatively Prime Uniform Partitions</a>, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp. 1-12. %F A300486 a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d). %e A300486 The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222). %t A300486 Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}] %o A300486 (PARI) a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ _Andrew Howroyd_, Aug 29 2018 %Y A300486 Cf. A000837, A001383, A063834, A093637, A196545, A281113, A289501, A300383, A301462, A301467, A301480, A302094, A302698, A302915, A302916, A302917. %K A300486 nonn %O A300486 1,2 %A A300486 _Gus Wiseman_, Apr 15 2018