This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300487 #19 Mar 09 2024 18:42:33 %S A300487 74,834,80940,809400,833334,7414114,7422694,7539694,8094000,80940000, %T A300487 809400000,8094000000,80940000000,83335786566,809400000000, %U A300487 7539682539694,8094000000000,80940000000000 %N A300487 Numbers k whose 10's complement mod 10 of their digits is equal to phi(k), the Euler totient function of k. %C A300487 Any number of the form 8094*10^j, with j>0, is part of the sequence because its Euler totient function is 2016*10^j. %C A300487 Contains subsequence 834, 833334, 833333333333334, ... formed by numbers (10^k/4 + 2)/3 for k in A296059. - _Max Alekseyev_, Mar 09 2024 %e A300487 phi(74) = 36 that is the 10's complement of the digits of 74. %p A300487 with(numtheory): P:=proc(q) local a,b,k,n; %p A300487 for n from 1 to q do a:=convert(phi(n),base,10); %p A300487 for k from 1 to nops(a) do a[k]:=(10-a[k]) mod 10; od; b:=0; %p A300487 for k from 1 to nops(a) do b:=b*10+a[nops(a)-k+1]; od; %p A300487 if b=n then print(n); fi; od; end: P(10^9); %o A300487 (PARI) isok(x) = {my(dx = digits(x), dy = vector(#dx, k, (10-dx[k]) % 10)); fromdigits(dy) == eulerphi(x); } \\ _Michel Marcus_, Mar 12 2018 %Y A300487 Cf. A000010, A055120, A296059. %K A300487 nonn,base,more %O A300487 1,1 %A A300487 _Paolo P. Lava_, Mar 07 2018 %E A300487 a(11)-a(15) from _Giovanni Resta_, Mar 09 2018 %E A300487 a(16)-a(18) from _Max Alekseyev_, Mar 09 2024