cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300488 a(n) = n! * [x^n] -exp(n*x)*log(1 - x)/(1 - x).

This page as a plain text file.
%I A300488 #6 Mar 08 2018 21:17:29
%S A300488 0,1,7,65,770,11149,191124,3788469,85281552,2149582761,59983774240,
%T A300488 1835925702137,61157508893568,2202760340194517,85303050939131648,
%U A300488 3534478528925155725,156026612737389987840,7310587974761946511761,362356607517279564386304,18943214212273585171456753
%N A300488 a(n) = n! * [x^n] -exp(n*x)*log(1 - x)/(1 - x).
%H A300488 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A300488 a(n) = Sum_{k=1..n} n^(n-k)*binomial(n,k)*k!*H(k), where H(k) is the k-th harmonic number.
%e A300488 The table of coefficients of x^k in expansion of e.g.f. -exp(n*x)*log(1 - x)/(1 - x) begins:
%e A300488 n = 0: (0), 1,   3,   11,    50,     274,  ...
%e A300488 n = 1:  0, (1),  5,   23,   116,     669,  ...
%e A300488 n = 2:  0,  1,  (7),  41,   242,    1534,  ...
%e A300488 n = 3:  0,  1,   9,  (65),  452,    3229,  ...
%e A300488 n = 4:  0,  1,  11,   95,  (770),   6234,  ...
%e A300488 n = 5:  0,  1,  13,  131,  1220,  (11149), ...
%e A300488 ...
%e A300488 This sequence is the main diagonal of the table.
%t A300488 Table[n! SeriesCoefficient[-Exp[n x] Log[1 - x]/(1 - x), {x, 0, n}], {n, 0, 19}]
%t A300488 Table[Sum[n^(n - k) Binomial[n,k] k! HarmonicNumber[k], {k, 1, n}], {n, 0, 19}]
%Y A300488 Cf. A000254, A065456, A073596.
%K A300488 nonn
%O A300488 0,3
%A A300488 _Ilya Gutkovskiy_, Mar 07 2018