This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300489 #9 Mar 08 2018 21:17:37 %S A300489 0,1,5,65,1766,83674,6124584,639826452,90328291248,16558780949136, %T A300489 3823322392154880,1085461798576638240,371610484248792556800, %U A300489 150961314165968542273920,71790302154674639506682880,39506878580692178250399571200,24909116615180033772524150937600 %N A300489 a(n) = n! * [x^n] -log(1 - x)/(1 - n*x). %F A300489 a(n) = n!*n^n*Sum_{k=1..n} 1/(k*n^k). %e A300489 The table of coefficients of x^k in expansion of e.g.f. -log(1 - x)/(1 - n*x) begins: %e A300489 n = 0: (0), 1, 1, 2, 6, 24, ... %e A300489 n = 1: 0, (1), 3, 11, 50, 274, ... %e A300489 n = 2: 0, 1, (5), 32, 262, 2644, ... %e A300489 n = 3: 0, 1, 7, (65), 786, 11814, ... %e A300489 n = 4: 0, 1, 9, 110, (1766), 35344, ... %e A300489 n = 5: 0, 1, 11, 167, 3346, (83674), ... %e A300489 ... %e A300489 This sequence is the main diagonal of the table. %t A300489 Table[n! SeriesCoefficient[-Log[1 - x]/(1 - n x), {x, 0, n}], {n, 0, 16}] %t A300489 Join[{0}, Table[n! n^n Sum[1/(k n^k), {k, 1, n}], {n, 1, 16}]] %o A300489 (PARI) a(n) = n!*n^n*sum(i=1, n, 1/(i*n^i)); \\ _Altug Alkan_, Mar 08 2018 %Y A300489 Cf. A000254, A068102, A069015, A104150. %K A300489 nonn %O A300489 0,3 %A A300489 _Ilya Gutkovskiy_, Mar 07 2018