This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300508 #8 Mar 11 2018 20:07:33 %S A300508 1,-1,-2,-1,-1,3,3,9,9,10,8,-1,-21,-45,-77,-130,-163,-198,-179,-108, %T A300508 101,451,1058,1878,2999,4276,5595,6511,6446,4443,-838,-11069,-28373, %U A300508 -54652,-91948,-140370,-198501,-259706,-311997,-332003,-285486,-118600,239086,881998,1918851,3470261 %N A300508 Expansion of Product_{k>=1} (1 - x^k)^p(k), where p(k) = number of partitions of k (A000041). %C A300508 Convolution inverse of A001970. %H A300508 Alois P. Heinz, <a href="/A300508/b300508.txt">Table of n, a(n) for n = 0..3000</a> %F A300508 G.f.: Product_{k>=1} (1 - x^k)^A000041(k). %p A300508 with(numtheory): with(combinat): %p A300508 b:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A300508 numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n) %p A300508 end: %p A300508 a:= proc(n) option remember; `if`(n=0, 1, %p A300508 -add(b(n-i)*a(i), i=0..n-1)) %p A300508 end: %p A300508 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 07 2018 %t A300508 nmax = 45; CoefficientList[Series[Product[(1 - x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A300508 Cf. A000041, A001970, A261049. %K A300508 sign %O A300508 0,3 %A A300508 _Ilya Gutkovskiy_, Mar 07 2018