cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300510 Number of ways to write n^2 as 4^k*(m^2+1) + x^2 + y^2, where m is 1 or 2, and k,x,y are nonnegative integers with x <= y.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 3, 1, 4, 4, 5, 3, 5, 4, 6, 1, 3, 4, 5, 4, 7, 6, 5, 3, 8, 6, 6, 4, 5, 7, 7, 1, 5, 4, 11, 4, 7, 5, 6, 4, 6, 8, 5, 6, 12, 5, 5, 3, 6, 9, 8, 6, 7, 6, 10, 4, 7, 7, 6, 7, 5, 9, 9, 1, 8, 5, 10, 4, 9, 11, 9, 4, 11, 7, 12, 5, 8, 7, 7, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 07 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1; in other words, for any integer n > 1 there is a nonnegative integer k such that either n^2 - 2*4^k or n^2 - 5*4^k can be written as the sum of two squares. Moreover, a(n) = 1 only for n = 2^k with k > 0.
This conjecture is stronger than the first conjecture in A300448. We have verified that a(n) > 0 for all n = 2..5*10^7.
Consider positive integers c not divisible by 4 such that for any integer n > 1 there is a nonnegative integer k for which n^2 - 2*4^k or n^2 - c*4^k can be written as the sum of two squares. Our computation for n up to 3*10^7 shows that the only candidates for values of c smaller than 160 are 5, 17, 18, 26, 29, 41, 45, 65, 74, 89, 98, 101, 113, 122, 125, 146, 149, 153. These numbers have the form 9^a*(3*b+2) with a and b nonnegative integers and the p-adic order of 3*b+2 is even for any prime p == 3 (mod 4). For n = 42211965 there is no nonnegative integer k such that n^2 - 2*4^k or n^2 - 162*4^k can be written as the sum of two squares.
Qing-Hu Hou at Tianjin Univ. reported that he had verified a(n) > 0 for n up to 10^9. - Zhi-Wei Sun, Mar 14 2018
Qing-Hu Hou found that 29, 65, 113 should be excluded from the candidates. In fact, for c = 29, 65, 113 there is no nonnegative integer k such that N(c)^2 - 2*4^k or N(c)^2 - c*4^k can be written as the sum of two squares, where N(29) = 51883659, N(65) = 56173837 and N(113) = 65525725. - Zhi-Wei Sun, Mar 23 2018
a(n) > 0 for 1 < n < 6*10^9. - Giovanni Resta, Jun 14 2019

Examples

			a(1) = 0 since 1^2 - 4^k*(m^2+1) < 0 for k = 0,1,2,... and m = 1, 2.
a(2) = 1 since 2^2 = 4^0*(1^2+1) + 1^2 + 1^2.
a(3) = 2 since 3^2 = 4^0*(2^2+1) + 0^2 + 2^2 = 4^1*(1^2+1) + 0^2 + 1^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1]-3,4]==0&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[QQ[n^2-4^k*(m^2+1)],Do[If[SQ[n^2-4^k(m^2+1)-x^2],r=r+1],{x,0,Sqrt[(n^2-4^k(m^2+1))/2]}]],{m,1,2},{k,0,Log[4,n^2/(m^2+1)]}];tab=Append[tab,r],{n,1,80}];Print[tab]