A300560 Deep factorization of n, written in binary: replace each factor p^e with the expression [primepi(p) [ e ]], iterate on these numbers, finally replace '[' and ']' with '1' and '0'.
0, 1100, 11100100, 11110000, 111100100100, 110011100100, 111110000100, 111110010000, 111001110000, 1100111100100100, 1111100100100100, 1111000011100100, 1110011100100100, 1100111110000100, 11100100111100100100, 111111000000, 1111110000100100, 1100111001110000, 1111110010000100
Offset: 1
Keywords
Examples
The first term a(1) = 0 represents, by convention, the empty factorization of the number 1. 2 = prime(1)^1 => (1(1)) => (()) => 1100 = a(2). (The 1's disappear, having empty factorization.) 3 = prime(2)^1 => (2(1)) => ((())()) [using 2 => (())] => 11100100 = a(3). 4 = prime(1)^2 => (1(2)) => (((()))) => 11110000 = a(4). 5 = prime(3)^1 => (3(1)) => (((())())()) => 111100100100 = a(5). 6 = prime(1)^1*prime(2)^1 => (1(1))(2(1)) => (())((())()) => 110011100100 = a(6) (= concatenation of a(2) and a(3), since 6 = 2*3.) 7 = prime(4)^1 => (4(1)) => ((((())))()) => 111110000100 = a(7). 8 = prime(1)^3 => (1(3)) => ((((())()))) => 111110010000 = a(8), and so on. To convert back to the usual factorization, replace 0 and 1 by ')' and '(', then iteratively replace any (x(y)) by prime_x^y, where an empty x or y means 1. Examples: 1100 = (()) = (x(y)) with x = y = 1, so (()) = prime_1^1 = 2. 110011100100 = _(())_(_(())_()) = 2 (2()) = 2 prime_2^1 = 6. 111110010000 = (((_(())_()))) = ((_(2())_)) = ((3)) = prime_1^3 = 8.
Links
- J. Awbrey, Riffs and Rotes, Selected Sequences, OEIS wiki, Feb. 2010.
Comments