A300561 Deep factorization of n, A300560, converted from binary to decimal. (Binary digits obtained by recursively replacing each factor p^e with [primepi(p) [e]], then '[' = 1, ']' = 0.)
0, 12, 228, 240, 3876, 3300, 3972, 3984, 3696, 53028, 63780, 61668, 59172, 53124, 937764, 4032, 64548, 52848, 64644, 986916, 937860, 850212, 62340, 1020132, 62064, 845604, 59280, 987012, 948516, 13520676, 1034532, 64656, 15005988, 850980, 15880068, 986736, 1017636
Offset: 1
Keywords
Examples
The first term a(1) = 0 represents, by convention, the empty factorization of the number 1. 2 = prime(1)^1 => (1(1)) => (()) => 1100_2 = 12 = a(2). 3 = prime(2)^1 => (2(1)) => ((())()) => 11100100_2 = 228 = a(3). 4 = prime(1)^2 => (1(2)) => (((()))) => 11110000_2 = 240 = a(4). 5 = prime(3)^1 => (3(1)) => (((())())()) => 111100100100_2 = 3876 = a(5). 6 = prime(1)^1*prime(2)^1 => (1(1))(2(1)) => (())((())()) => 110011100100_2 = 3300 = a(6). 7 = prime(4)^1 => (4(1)) => ((((())))()) => 111110000100_2 = 3972 = a(7). 8 = prime(1)^3 => (1(3)) => ((((())()))) => 111110010000_2 = 3984 = a(8), and so on.
Links
- J. Awbrey, Riffs and Rotes, Selected Sequences, OEIS Wiki, Feb. 2010.
Comments