cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300598 a(n) = A300591(n) / n for n>=1.

This page as a plain text file.
%I A300598 #7 Mar 09 2018 22:04:28
%S A300598 1,1,9,184,6105,285909,17599855,1366487208,130312110537,
%T A300598 14977420657205,2044343858148526,327321396575462328,
%U A300598 60816978336055883851,12988287586752637095951,3161098207809674432144760,870056671853543460441640960,268957112246197632099231284121,92799365448465489168470692401021,35538203127994691420731763316052499,15028828305943284874962308136851532840
%N A300598 a(n) = A300591(n) / n for n>=1.
%C A300598 If G(x) satisfies: [x^n] exp (n^2 * G(x) ) = n^2 * [x^(n-1)] exp( n^2 * G(x) ) for n>=1, then G(x) equals the o.g.f. of A300591.
%H A300598 Paul D. Hanna, <a href="/A300598/b300598.txt">Table of n, a(n) for n = 1..200</a>
%o A300598 (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1)^2 ); (1/n)*polcoeff( log(Ser(A)), n)}
%o A300598 for(n=1, 30, print1(a(n), ", "))
%Y A300598 Cf. A300591.
%K A300598 nonn
%O A300598 1,3
%A A300598 _Paul D. Hanna_, Mar 09 2018