cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300630 Positive numbers k without two consecutive ones in the binary representation of 1/k.

This page as a plain text file.
%I A300630 #13 Jun 28 2018 04:50:16
%S A300630 1,2,3,4,6,7,8,12,14,15,16,24,28,30,31,32,48,51,56,60,62,63,64,96,102,
%T A300630 112,120,124,126,127,128,192,195,204,224,240,248,252,254,255,256,384,
%U A300630 390,399,408,448,451,455,480,496,504,508,510,511,512,768,771,775
%N A300630 Positive numbers k without two consecutive ones in the binary representation of 1/k.
%C A300630 Equivalently, these are the numbers k such that A300655(k) = 1.
%C A300630 Equivalently, these are the numbers k such that A300653(k, 3) > 3.
%C A300630 If n belongs to this sequence then 2*n belongs to this sequence.
%C A300630 This sequence has similarities with the Fibbinary numbers (A003714); here 1/k has no two consecutive ones in binary, there k has no two consecutive ones in binary.
%C A300630 For any odd term k, there is at least one positive Fibbinary number, say f, such that k * f belongs to A000225.
%C A300630 Apparently, the only Fibbinary numbers that belong to this sequence are the powers of 2 (A000079).
%C A300630 See A300669 for the complementary sequence.
%C A300630 Includes 2^k-1 for all k>=1. - _Robert Israel_, Jun 27 2018
%H A300630 Robert Israel, <a href="/A300630/b300630.txt">Table of n, a(n) for n = 1..629</a>
%e A300630 The first terms, alongside the binary representation of 1/a(n), are:
%e A300630   n   a(n)    bin(1/a(n)) with repeating digits in parentheses
%e A300630   --  ----    ------------------------------------------------
%e A300630    1     1    1.(0)
%e A300630    2     2    0.1(0)
%e A300630    3     3    0.(01)
%e A300630    4     4    0.01(0)
%e A300630    5     6    0.0(01)
%e A300630    6     7    0.(001)
%e A300630    7     8    0.001(0)
%e A300630    8    12    0.00(01)
%e A300630    9    14    0.0(001)
%e A300630   10    15    0.(0001)
%e A300630   11    16    0.0001(0)
%e A300630   12    24    0.000(01)
%e A300630   13    28    0.00(001)
%e A300630   14    30    0.0(0001)
%e A300630   15    31    0.(00001)
%e A300630   16    32    0.00001(0)
%e A300630   17    48    0.0000(01)
%e A300630   18    51    0.(00000101)
%e A300630   19    56    0.000(001)
%e A300630   20    60    0.00(0001)
%p A300630 filter:= proc(n) local m,d,r;
%p A300630   m:= n/2^padic:-ordp(n,2);
%p A300630   d:= numtheory:-order(2,m);
%p A300630   r:=(2^d-1)/m;
%p A300630   Bits:-Or(r,2*r)=3*r
%p A300630 end proc:
%p A300630 select(filter, [$1..1000]); # _Robert Israel_, Jun 27 2018
%o A300630 (PARI) is(n) = my (f=1/max(2,n), s=Set()); while (!setsearch(s, f), if (floor(f*4)==3, return (0), s=setunion(s,Set(f)); f=frac(f*2))); return (1)
%Y A300630 Cf. A000079, A000225, A003714, A300653, A300655, A300669.
%K A300630 nonn,base
%O A300630 1,2
%A A300630 _Rémy Sigrist_, Mar 10 2018