This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300652 #8 Aug 26 2018 16:34:52 %S A300652 1,2,4,12,40,136,496,1952,7488,30368,123456,512384,2129664,9068672, %T A300652 38391552,165642752,713405952,3109135872,13528865792,59591322624, %U A300652 261549260800,1159547047936,5131968999424,22883893137408,101851069587456,456703499042816,2042949493276672 %N A300652 Number of enriched p-trees of weight 2n + 1 in which all outdegrees and all leaves are odd. %C A300652 An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of at least two enriched p-trees whose weights are weakly decreasing and sum to n. %H A300652 Andrew Howroyd, <a href="/A300652/b300652.txt">Table of n, a(n) for n = 0..500</a> %F A300652 a(n) = (1 - (-1)^n)/2 + Sum_y Product_{i in y} a(i) where the sum is over all non-singleton integer partitions of n with an odd number of parts. %e A300652 The a(3) = 12 trees: %e A300652 7, %e A300652 (511), (331), %e A300652 ((111)31), (3(111)1), ((311)11), (31111), %e A300652 ((111)(111)1), (((111)11)11), ((11111)11), ((111)1111), (1111111). %t A300652 r[n_]:=r[n]=If[OddQ[n],1,0]+Sum[Times@@r/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}]; %t A300652 Table[r[n],{n,1,40,2}] %o A300652 (PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ _Andrew Howroyd_, Aug 26 2018 %Y A300652 Cf. A000009, A000041, A063834, A196545, A273873, A281145, A289501, A298118, A300352, A300353, A300354, A300436, A300439, A300442, A300443, A300574, A300797. %K A300652 nonn %O A300652 0,2 %A A300652 _Gus Wiseman_, Mar 10 2018