cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300654 a(n) is the greatest k such that, for i = 1..k, the binary representation of i appears as a substring in the binary representation of 1/n (ignoring the radix point and adding trailing zeros if necessary in case of a terminating expansion).

This page as a plain text file.
%I A300654 #8 Mar 11 2018 17:17:38
%S A300654 2,2,2,2,4,2,2,2,4,4,8,2,9,2,2,2,4,4,16,4,4,8,6,2,8,9,11,2,20,2,2,2,4,
%T A300654 4,8,4,32,16,6,4,4,4,8,8,6,6,12,2,12,8,2,9,33,11,10,2,8,20,37,2,41,2,
%U A300654 2,2,4,4,64,4,14,8,14,4,4,32,11,16,17,6,22,4
%N A300654 a(n) is the greatest k such that, for i = 1..k, the binary representation of i appears as a substring in the binary representation of 1/n (ignoring the radix point and adding trailing zeros if necessary in case of a terminating expansion).
%C A300654 Equivalently, a(n) is the greatest k such that A300653(n, k) = k.
%C A300654 This sequence has similarities with A144016: here we consider the binary expansion of 1/n, there the binary expansion of n.
%H A300654 Rémy Sigrist, <a href="/A300654/a300654.gp.txt">PARI program for A300654</a>
%F A300654 a(2*n) = a(n).
%F A300654 a(n) = 2 iff n belongs to A300630.
%e A300654 For n = 19:
%e A300654 - the binary expansion of 1/19 is 0.0000(110101111001010000) (with repeating digits in parentheses),
%e A300654 - the first occurrence of the binary representation of k for k = 1..16 is:
%e A300654   k   bin(k)  bin(1/19) with bin(k) in parentheses
%e A300654   --  ------  ------------------------------------
%e A300654    1      1   0.0000(1)101...
%e A300654    2     10   0.00001(10)101...
%e A300654    3     11   0.0000(11)010...
%e A300654    4    100   0.000011010111(100)101...
%e A300654    5    101   0.00001(101)011...
%e A300654    6    110   0.0000(110)101...
%e A300654    7    111   0.000011010(111)100...
%e A300654    8   1000   0.00001101011110010(1000)011...
%e A300654    9   1001   0.000011010111(1001)010...
%e A300654   10   1010   0.00001(1010)111...
%e A300654   11   1011   0.0000110(1011)110...
%e A300654   12   1100   0.00001101011(1100)101...
%e A300654   13   1101   0.0000(1101)011...
%e A300654   14   1110   0.0000110101(1110)010...
%e A300654   15   1111   0.000011010(1111)001...
%e A300654   16  10000   0.00001101011110010(10000)110...
%e A300654 - the binary representation of 17 (10001) is missing,
%e A300654 - hence a(19) = 16.
%o A300654 (PARI) See Links section.
%Y A300654 Cf. A144016, A300653, A300630.
%K A300654 nonn,base
%O A300654 1,1
%A A300654 _Rémy Sigrist_, Mar 10 2018