This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300658 #22 Apr 06 2025 19:55:26 %S A300658 4,6,8,28,32,36,78,84,128,168,252,496,504,532,756,1488,2808,3720,4464, %T A300658 5928,8128,8192,13392,24384,61236,73152,78120,131072,183708,217728, %U A300658 219456,425880,458640,524288,1084752,1834560,2204280,3254256,6120432,6386688,11007360 %N A300658 Numbers m that divide sigma(sigma(m) - m) where sigma is the sum of divisors function (A000203). %C A300658 Numbers m that divide A072869(m). %C A300658 Numbers m such that sigma(sigma(m)-m) = k*m for k = 1 - 5: %C A300658 k = 1: 4, 8, 32, 128, 8192, 131072, 524288, 2147483648, ... (A072868), %C A300658 k = 2: 6, 28, 36, 496, 8128, 33550336, 8589869056, ... (A247111), %C A300658 k = 3: 78, 532, ..., %C A300658 k = 4: 84, 252, 756, 1488, 4464, 13392, 24384, 61236, 73152, ..., %C A300658 k = 5: 168, 2808, 5928, 6120432, ... %C A300658 Perfect numbers (A000396) are terms. %C A300658 Corresponding values of (sigma(sigma(m) - m)) / m for numbers m from this sequence: 1, 2, 1, 2, 1, 2, 3, 4, 1, 5, 4, 2, 6, 3, 4, 4, 5, 7, 4, 5, 2, 1, 4, 4, 4, 4, 10, 1, 4, 8, 4, 12, 10, 1, 4, 11, 9, ... %C A300658 Sequence of the smallest numbers k such that sigma(sigma(k) - k) = n*k for n >= 1: 4, 6, 78, 84, 168, 504, 3720, 217728, 2204280, 78120, 1834560, 425880, ... %e A300658 6 is a term because sigma(sigma(6) - 6) / 6 = 12 / 6 = 2 (integer). %o A300658 (Magma) [n: n in[2..1000000] | SumOfDivisors(SumOfDivisors(n)- n) mod n eq 0]; %o A300658 (PARI) isok(n) = (n!=1) && !(sigma(sigma(n)-n) % n); \\ _Michel Marcus_, Mar 25 2018 %Y A300658 Cf. A000203, A000396, A072868, A072869, A247111. %K A300658 nonn %O A300658 1,1 %A A300658 _Jaroslav Krizek_, Mar 24 2018