This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300662 #7 Mar 15 2018 18:19:08 %S A300662 1,1,3,8,22,59,160,429,1155,3105,8354,22474,60457,162636,437509, %T A300662 1176941,3166097,8517138,22912002,61635707,165806564,446037175, %U A300662 1199887133,3227823181,8683185454,23358686444,62837334885,169039070970,454732963567,1223279724439,3290751724917 %N A300662 Expansion of 1/(1 - x - Sum_{k>=2} prime(k-1)*x^k). %C A300662 Invert transform of A008578. %H A300662 Alois P. Heinz, <a href="/A300662/b300662.txt">Table of n, a(n) for n = 0..2327</a> %H A300662 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A300662 G.f.: 1/(1 - Sum_{k>=1} A008578(k)*x^k). %p A300662 a:= proc(n) option remember; `if`(n=0, 1, add( %p A300662 `if`(j=1, 1, ithprime(j-1))*a(n-j), j=1..n)) %p A300662 end: %p A300662 seq(a(n), n=0..35); # _Alois P. Heinz_, Mar 10 2018 %t A300662 nmax = 30; CoefficientList[Series[1/(1 - x - Sum[Prime[k - 1] x^k, {k, 2, nmax}]), {x, 0, nmax}], x] %t A300662 p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}] %Y A300662 Cf. A000040, A008578, A023626, A030011, A030012, A030013, A030014, A030015, A030016, A030017, A030018, A292744, A300632. %K A300662 nonn %O A300662 0,3 %A A300662 _Ilya Gutkovskiy_, Mar 10 2018