cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300699 Irregular triangle read by rows: T(n, k) = number of vertices with rank k in concertina n-cube.

This page as a plain text file.
%I A300699 #29 Sep 12 2022 22:49:22
%S A300699 1,1,1,1,2,2,1,1,3,6,6,6,3,1,1,4,12,18,28,24,28,18,12,4,1,1,5,20,40,
%T A300699 80,95,150,150,150,150,95,80,40,20,5,1,1,6,30,75,180,270,506,660,840,
%U A300699 1080,1035,1035,1080,840,660,506,270,180,75,30,6,1,1,7,42,126,350,630,1337,2107,3192,4760
%N A300699 Irregular triangle read by rows: T(n, k) = number of vertices with rank k in concertina n-cube.
%C A300699 n-place formulas in first-order logic like Ax Ey P(x, y) ordered by implication form a graded poset, and its Hasse diagram is the concertina n-cube.
%C A300699 Sum of row n is A000629(n), the number of vertices of a concertina n-cube.
%C A300699 The rows are palindromic. Their lengths are the central polygonal numbers A000124 = 1, 2, 4, 7, 11, 16, 22, ... That means after row 0 rows of even and odd length follow each other in pairs.
%C A300699 The central values are 1, (1), (2), 6, 24, (150), (1035), 9030, 88760, (1002204), ... (Values next to the center in rows of even length are in parentheses.)
%C A300699 Maximal values are 1, 1, 2, 6, 28, 150, 1080, 9030, 88760, 1002204, ...
%C A300699 A300695 is a triangle of the same shape that shows the number of ranks in cocoon concertina hypercubes.
%H A300699 Tilman Piesk, <a href="/A300699/b300699.txt">Rows 0..9, flattened</a>
%H A300699 Tilman Piesk, <a href="/A300699/a300699.txt">Rows 0..9</a>
%H A300699 Tilman Piesk, <a href="https://en.wikiversity.org/wiki/Formulas_in_predicate_logic">Formulas in predicate logic</a> (Wikiversity)
%H A300699 Tilman Piesk, Concertina cube Hasse diagram <a href="https://commons.wikimedia.org/wiki/File:Concertina_cube_Hasse_diagram.png">with labels</a> and <a href="https://commons.wikimedia.org/wiki/File:Ranks_in_concertina_cube.svg">with highlighted ranks</a>
%H A300699 Tilman Piesk, <a href="https://github.com/watchduck/concertina_hypercubes/tree/master/computed_results/coordinates">Lists of vertices ordered by rank</a> for n=2..6
%H A300699 Tilman Piesk, <a href="https://github.com/watchduck/concertina_hypercubes/blob/master/ranks_convex.py">Python code used to generate the sequence</a>
%e A300699 First rows of the triangle:
%e A300699     k   0   1   2   3   4   5    6    7    8    9   10  11  12  13  14  15
%e A300699   n
%e A300699   0     1
%e A300699   1     1   1
%e A300699   2     1   2   2   1
%e A300699   3     1   3   6   6   6   3    1
%e A300699   4     1   4  12  18  28  24   28   18   12    4    1
%e A300699   5     1   5  20  40  80  95  150  150  150  150   95  80  40  20   5   1
%e A300699   6     1   6  30  75 180 270  506  660  840 1080 1035 ...
%e A300699 The ranks of vertices of a concertina cube (n=3) can be seen in the linked Hasse diagrams. T(3, 4) = 6, so there are 6 vertices with rank 4.
%e A300699 Ey Ez Ax P(x, y, z) implies Ey Ax Ez P(x, y, z), and their ranks are 3 and 4. As the difference in rank is 1, this implication is an edge in the Hasse diagram.
%Y A300699 Cf. A000124, A000629, A300695.
%K A300699 nonn,tabf
%O A300699 0,5
%A A300699 _Tilman Piesk_, Mar 11 2018