This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300707 #27 Aug 15 2025 09:12:43 %S A300707 1,0,1,4,6,7,8,0,3,1,6,0,4,1,9,2,0,5,4,5,4,6,2,5,3,4,6,5,5,0,7,3,4,4, %T A300707 9,0,8,8,5,1,3,2,9,0,1,7,4,2,3,8,0,6,4,7,5,9,5,2,7,9,0,2,0,1,9,7,8,8, %U A300707 6,3,0,7,7,6,7,5,2,8,3,2,9,3,6,4,7,1,0,2,7,8,3,6,9,5,3,4,3,6,7,2,4,0,5 %N A300707 Decimal expansion of Pi^4/96. %C A300707 Also the sum of the series Sum_{n>=0} (1/(2n+1)^4), whose value is obtained from zeta(4) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s) = (1-2^(-s))*zeta(s). %C A300707 For the partial sums of this series see A120269/A128493. - _Wolfdieter Lang_, Sep 02 2019 %H A300707 Eric Weisstein's World of Mathematics, <a href="http://www.mathworld.wolfram.com/DirichletLambdaFunction.html">Dirichlet Lambda Function</a>. See (6). %H A300707 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A300707 Equals A092425/96. - _Omar E. Pol_, Mar 11 2018 %F A300707 Equals (15/16)*zeta(4) = (15/16)*A013662. - _Wolfdieter Lang_, Sep 02 2019 %F A300707 Equals Sum_{k>=1} 1/(2*k-1)^4. - _Sean A. Irvine_, Mar 25 2025 %F A300707 Equals lambda(4), where lambda is the Dirichlet lambda function. - _Michel Marcus_, Aug 15 2025 %e A300707 1.0146780316041920545462534655073449088513290174238064... %p A300707 evalf((1/96)*Pi^4, 120) %t A300707 RealDigits[Pi^4/96, 10, 120][[1]] %o A300707 (PARI) default(realprecision, 120); Pi^4/96 %o A300707 (MATLAB) format long; pi^4/96 %Y A300707 Cf. A013662, A092425, A111003, A120269, A128493, A300709, A300710, A300731. %K A300707 nonn,cons %O A300707 1,4 %A A300707 _Iaroslav V. Blagouchine_, Mar 11 2018