This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300715 #10 Mar 15 2018 19:23:57 %S A300715 1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,3,0,0,0,4,3,0,0,7,6,0,0,14,10,4,0, %T A300715 22,20,10,0,32,39,20,0,49,70,42,0,12,116,88,0,128,156,174,11,207,3, %U A300715 320,0,333,551,575,0,555,914,0,0,959,1502,1829,44,1691,2486,3192,0,3000,4172,4005 %N A300715 Number of compositions (ordered partitions) of n into squares that do not divide n. %H A300715 Alois P. Heinz, <a href="/A300715/b300715.txt">Table of n, a(n) for n = 0..5000</a> %H A300715 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A300715 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %e A300715 a(21) = 4 because we have [9, 4, 4, 4], [4, 9, 4, 4], [4, 4, 9, 4] and [4, 4, 4, 9]. %p A300715 a:= proc(m) option remember; local b; b:= proc(n) option %p A300715 remember; `if`(n=0, 1, add((s->`if`(s>n or irem(m, s) %p A300715 =0, 0, b(n-s)))(j^2), j=2..isqrt(n))) end; b(m) %p A300715 end: %p A300715 seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 11 2018 %t A300715 Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 75}] %Y A300715 Cf. A000290, A006456, A294105, A294265, A294266, A300702, A300703, A300704, A300706. %K A300715 nonn %O A300715 0,14 %A A300715 _Ilya Gutkovskiy_, Mar 11 2018