cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300751 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x + 3*y + 5*z a positive square, where x,y,z,w are nonnegative integers such that 2*x or y or z is a square.

Original entry on oeis.org

1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 4, 2, 1, 5, 5, 2, 1, 2, 2, 2, 1, 4, 5, 2, 1, 4, 7, 1, 2, 5, 3, 2, 1, 3, 6, 5, 2, 8, 6, 1, 3, 5, 6, 2, 2, 4, 8, 5, 4, 2, 4, 3, 2, 6, 4, 5, 2, 1, 6, 4, 1, 8, 9, 6, 2, 3, 3, 1, 3, 7, 9, 5, 5, 4, 7, 1, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 11 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n = 1,2,3,..., and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 0, 1, 4, 5, 6, 7, 8, 20, 24, 28, 31, 36, 43, 61, 71, 79, 100, 116, 157, 188, 200, 344, 351, 388, 632.
This is stronger than the author's 1-3-5 conjecture in A271518. See also A300752 for a similar conjecture stronger than the 1-3-5 conjecture.
a(n) > 0 for all n = 1..3*10^6. - Zhi-Wei Sun, Oct 06 2020

Examples

			a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 2*0 = 0^2 and 0 + 3*2 + 5*2 = 4^2.
a(61) = 1 since 61 = 0^2 + 0^2 + 5^2 + 6^2 with 0 = 0^2 and 0 + 3*0 + 5*5 = 5^2.
a(79) = 1 since 79 = 5^2 + 2^2 + 1^2 + 7^2 with 1 = 1^2 and 5 + 3*2 + 5*1 = 4^2.
a(188) = 1 since 188 = 7^2 + 9^2 + 3^2 + 7^2 with 9 = 3^2 and 7 + 3*9 + 5*3 = 7^2.
a(200) = 0 since 200 = 6^2 + 10^2 + 0^2 + 8^2 with 0 = 0^2 and 6 + 3*10 + 5*0 = 6^2.
a(632) = 1 since 632 = 6^2 + 16^2 + 18^2 + 4^2 with 16 = 4^2 and 6 + 3*16 + 5*18 = 12^2.
a(808) = 3 since 808 = 8^2 + 2^2 + 26^2 + 8^2 = 8^2 + 22^2 + 14^2 + 8^2 = 18^2 + 12^2 + 18^2 + 4^2  with 2*8 = 4^2, 2*18 = 6^2 and 8 + 3*2 + 5*26 = 8 + 3*22 + 5*14 = 18 + 3*12 + 5*18 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[(SQ[2(m^2-3y-5z)]||SQ[y]||SQ[z])&&SQ[n-(m^2-3y-5z)^2-y^2-z^2],r=r+1],{m,1,(35n)^(1/4)},{y,0,Min[m^2/3,Sqrt[n]]},{z,0,Min[(m^2-3y)/5,Sqrt[n-y^2]]}];tab=Append[tab,r],{n,1,80}];Print[tab]