A300761 Number of non-equivalent ways (mod D_2) to select 4 points from n equidistant points on a straight line so that no selected point is equally distant from two other selected points.
0, 1, 3, 6, 15, 28, 53, 87, 140, 210, 310, 434, 600, 803, 1061, 1368, 1747, 2190, 2723, 3337, 4060, 4884, 5840, 6916, 8148, 9525, 11083, 12810, 14747, 16880, 19253, 21851, 24720, 27846, 31278, 34998, 39060, 43447, 48213, 53340, 58887, 64834, 71243, 78093, 85448
Offset: 4
Links
- Heinrich Ludwig, Table of n, a(n) for n = 4..1000
Formula
a(n) = (n^4 - 12*n^3 + 54*n^2 - 88*n)/48 + (n == 1 (mod 2))*(-4*n + 19)/16 + (n == 5 (mod 6))/3 + (n == 2 (mod 6))/3 + (n == 2 (mod 4))/2.
a(n) = (n^4 - 12*n^3 + 54*n^2 - 88*n)/48 + b(n) + c(n), where
b(n) = 0 for n even
b(n) = (-4*n + 19)/16 for n odd
c(n) = 0 for n == 0,1,3,4,7,9 (mod 12)
c(n) = 1/3 for n == 5,8,11 (mod 12)
c(n) = 1/2 for n == 6,10 (mod 12)
c(n) = 5/6 for n == 2 (mod 12).
From Colin Barker, Mar 15 2018: (Start)
G.f.: x^5*(1 + x + 4*x^3 + x^4 + 5*x^5) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11) for n>14.
(End)
Comments