cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300761 Number of non-equivalent ways (mod D_2) to select 4 points from n equidistant points on a straight line so that no selected point is equally distant from two other selected points.

Original entry on oeis.org

0, 1, 3, 6, 15, 28, 53, 87, 140, 210, 310, 434, 600, 803, 1061, 1368, 1747, 2190, 2723, 3337, 4060, 4884, 5840, 6916, 8148, 9525, 11083, 12810, 14747, 16880, 19253, 21851, 24720, 27846, 31278, 34998, 39060, 43447, 48213, 53340, 58887, 64834, 71243, 78093, 85448
Offset: 4

Views

Author

Heinrich Ludwig, Mar 15 2018

Keywords

Comments

The condition of the selection is also known as "no 3-term arithmetic progressions".
A reflection of a selection is not counted. If reflections are to be counted see A300760.

Crossrefs

Formula

a(n) = (n^4 - 12*n^3 + 54*n^2 - 88*n)/48 + (n == 1 (mod 2))*(-4*n + 19)/16 + (n == 5 (mod 6))/3 + (n == 2 (mod 6))/3 + (n == 2 (mod 4))/2.
a(n) = (n^4 - 12*n^3 + 54*n^2 - 88*n)/48 + b(n) + c(n), where
b(n) = 0 for n even
b(n) = (-4*n + 19)/16 for n odd
c(n) = 0 for n == 0,1,3,4,7,9 (mod 12)
c(n) = 1/3 for n == 5,8,11 (mod 12)
c(n) = 1/2 for n == 6,10 (mod 12)
c(n) = 5/6 for n == 2 (mod 12).
From Colin Barker, Mar 15 2018: (Start)
G.f.: x^5*(1 + x + 4*x^3 + x^4 + 5*x^5) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11) for n>14.
(End)