cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300782 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the simple cubic lattice of index n.

This page as a plain text file.
%I A300782 #20 May 09 2023 10:26:46
%S A300782 1,3,3,9,5,13,7,24,14,23,11,49,15,33,31,66,21,70,25,89,49,61,33,162,
%T A300782 50,81,75,137,49,177,55,193,97,123,99,296,75,147,129,312,89,291,97,
%U A300782 269,218,203,113,534,146,302,203,357,141,451,207,508,247,307,171,789
%N A300782 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the simple cubic lattice of index n.
%H A300782 Andrey Zabolotskiy, <a href="/A300782/b300782.txt">Table of n, a(n) for n = 1..1000</a>
%H A300782 Matt DeCross, <a href="https://mdecross.github.io/LatticePolytopesandOrbifolds.pdf">Lattice Polytopes and Orbifolds</a>, 2015.
%H A300782 Matt DeCross, <a href="https://mdecross.github.io/OrbifoldsTalk.pdf">Lattice Polytopes and Orbifolds in Quiver Gauge Theories</a>, 2015. See slides 18-21.
%H A300782 Gus L. W. Hart and Rodney W. Forcade, <a href="https://scholarsarchive.byu.edu/facpub/180/">Algorithm for generating derivative structures</a>, Phys. Rev. B 77, 224115 (2008), <a href="https://doi.org/10.1103/PhysRevB.77.224115">DOI: 10.1103/PhysRevB.77.224115</a> [see Table IV].
%H A300782 Materials Simulation Group, <a href="https://github.com/msg-byu/enumlib">Derivative structure enumeration library</a>
%H A300782 <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>
%H A300782 <a href="/index/Cu#cubic_lattice">Index entries for sequences related to cubic lattice</a>
%o A300782 (Python)
%o A300782 # see A159842 for the definition of dc, fin, per, u, N, N2
%o A300782 def a(n): # from DeCross's slides
%o A300782     return (dc(u, N, N2)(n) + 6*dc(fin(1, -1, 0, 4), u, u, N)(n)
%o A300782       + 3*dc(fin(1, 3), u, u, N)(n)
%o A300782       + 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n)
%o A300782       + 6*dc(fin(1, 1), u, u, per(0, 1, 0, -1))(n))//24
%o A300782 print([a(n) for n in range(1, 300)])
%o A300782 # _Andrey Zabolotskiy_, Sep 02 2019
%Y A300782 Cf. A159842, A300783, A300784, A003051, A145393, A001001, A128119, A160870, A145396, A145398.
%K A300782 nonn
%O A300782 1,2
%A A300782 _Andrey Zabolotskiy_, Mar 12 2018
%E A300782 Terms a(11) and beyond from _Andrey Zabolotskiy_, Sep 02 2019