cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300783 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the 3D hexagonal lattice of index n.

This page as a plain text file.
%I A300783 #29 May 09 2023 10:27:01
%S A300783 1,3,5,11,7,19,11,34,23,33,19,77,25,53,55,104,37,115,45,143,91,105,61,
%T A300783 272,90,139,137,235,91,309,103,331,183,219,185,516,141,267,245,544,
%U A300783 169,529,185,485,411,375,217,952,278,550,389,647,271,829,397,922,477
%N A300783 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the 3D hexagonal lattice of index n.
%H A300783 Andrey Zabolotskiy, <a href="/A300783/b300783.txt">Table of n, a(n) for n = 1..1000</a>
%H A300783 Gus L. W. Hart and Rodney W. Forcade, <a href="https://hdl.lib.byu.edu/1877/2951">Algorithm for generating derivative structures</a>, Phys. Rev. B 77, 224115 (2008), <a href="https://doi.org/10.1103/PhysRevB.77.224115">DOI: 10.1103/PhysRevB.77.224115</a> [see Table IV].
%H A300783 Materials Simulation Group, <a href="https://github.com/msg-byu/enumlib">Derivative structure enumeration library</a>
%H A300783 Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda and Isao Tanaka, <a href="https://doi.org/10.1063/5.0021663">Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram</a>, J. Chem. Phys. 153, 104109 (2020); preprint: <a href="https://arxiv.org/abs/2002.12603">Derivative structure enumeration using binary decision diagram</a>, arXiv:2002.12603 [physics.comp-ph], 2020.
%H A300783 <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>
%o A300783 (Python)
%o A300783 # see A159842 for the definitions of dc, fin, per, u, N, N2
%o A300783 def a(n):
%o A300783     return (dc(u, N, N2)(n) + 6*dc(fin(1, -1, 0, 4), u, u, N)(n)
%o A300783             + dc(fin(1, 3), u, u, N)(n)
%o A300783             + 4*dc(fin(1, 0, 1), u, u, per(0, 1, -1))(n)) // 12
%o A300783 print([a(n) for n in range(1, 100)])
%o A300783 # _Andrey Zabolotskiy_, Feb 03 2020
%Y A300783 Cf. A159842, A300782, A300784, A003051, A145393.
%K A300783 nonn
%O A300783 1,2
%A A300783 _Andrey Zabolotskiy_, Mar 12 2018
%E A300783 Terms a(11) and beyond from _Andrey Zabolotskiy_, Feb 03 2020