A300784 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the tetragonal lattice of index n.
1, 5, 5, 17, 9, 29, 13, 51, 28, 53, 25, 115, 33, 81, 73, 153, 51, 176, 61, 219, 121, 161, 85, 403, 126, 213, 188, 353, 129, 473, 145, 487, 257, 335, 261, 776, 201, 405, 345, 815, 243, 801, 265, 731, 584, 569, 313, 1407, 398, 838, 559, 975, 393, 1256, 573, 1375
Offset: 1
Keywords
Links
- Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115 [see Table IV].
- Materials Simulation Group, Derivative structure enumeration library
- Index entries for sequences related to sublattices
Programs
-
Python
# see A159842 for the definition of dc, fin, per, u, N, N2 def a(n): return (dc(u, N, N2)(n) + 2*dc(fin(1, -1, 0, 4), u, u, N)(n) + 3*dc(fin(1, 3), u, u, N)(n) + 2*dc(fin(1, 1), u, u, per(0, 1, 0, -1))(n)) // 8 print([a(n) for n in range(1, 300)]) # Andrey Zabolotskiy, Jan 31 2020
Extensions
Terms a(11) and beyond from Andrey Zabolotskiy, Jan 31 2020