This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300785 #115 Mar 16 2025 07:30:17 %S A300785 1,1,1,1,127,1,1,1093,1093,1,1,3739,8905,3739,1,1,8905,30157,30157, %T A300785 8905,1,1,17431,71569,101935,71569,17431,1,1,30157,139861,241753, %U A300785 241753,139861,30157,1,1,47923,241753,472291,573217,472291,241753,47923,1,1,71569,383965,816229,1119721,1119721,816229,383965,71569,1 %N A300785 Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n. %C A300785 From _Kolosov Petro_, Apr 12 2020: (Start) %C A300785 Let A(m, r) = A302971(m, r) / A304042(m, r). %C A300785 Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r. %C A300785 Then T(n, k) = L(3, n, k). %C A300785 T(n, k) is symmetric: T(n, k) = T(n, n-k). (End) %H A300785 Muniru A Asiru, <a href="/A300785/b300785.txt">Rows n=0..100 of triangle, flattened</a>. %H A300785 Petro Kolosov, <a href="https://arxiv.org/abs/1603.02468">On the link between binomial theorem and discrete convolution</a>, arXiv:1603.02468 [math.NT], 2016-2025. %H A300785 Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/PolynomialIdentityInvolvingBTandFaulhaber.pdf">Polynomial identity involving binomial theorem and Faulhaber's formula</a>, 2023. %H A300785 Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/HistoryAndOverviewOfPolynomialP.pdf">History and overview of the polynomial P_b^m(x)</a>, 2024. %F A300785 From _Kolosov Petro_, Apr 12 2020: (Start) %F A300785 T(n, k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1. %F A300785 T(n, k) = 140*A094053(n, k)^3 + 0*A094053(n, k)^2 - 14*A094053(n, k)^1 + 1. %F A300785 T(n+3, k) = 4*T(n+2, k) - 6*T(n+1, k) + 4*T(n, k) - T(n-1, k), for n >= k. %F A300785 Sum_{k=1..n} T(n, k) = A001015(n). %F A300785 Sum_{k=0..n} T(n, k) = A258806(n). %F A300785 Sum_{k=0..n-1} T(n, k) = A001015(n). %F A300785 Sum_{k=1..n-1} T(n, k) = A258808(n). %F A300785 Sum_{k=1..n-1} T(n, k) = -A024005(n). %F A300785 Sum_{k=1..r} T(n, k) = -A316387(3, r, 0)*n^0 + A316387(3, r, 1)*n^1 - A316387(3, r, 2)*n^2 + A316387(3, r, 3)*n^3. (End) %F A300785 G.f.: (1 + 127*x^6*y^3 - 3*x*(1 + y) + 585*x^5*y^2*(1 + y) + 129*x^4*y*(1 + 17*y + y^2) + 3*x^2*(1 + 45*y + y^2) - x^3*(1 - 579*y - 579*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - _Stefano Spezia_, Sep 14 2024 %e A300785 Triangle begins: %e A300785 -------------------------------------------------------------------- %e A300785 k= 0 1 2 3 4 5 6 7 8 %e A300785 -------------------------------------------------------------------- %e A300785 n=0: 1; %e A300785 n=1: 1, 1; %e A300785 n=2: 1, 127, 1; %e A300785 n=3: 1, 1093, 1093, 1; %e A300785 n=4: 1, 3739, 8905, 3739, 1; %e A300785 n=5: 1, 8905, 30157, 30157, 8905, 1; %e A300785 n=6: 1, 17431, 71569, 101935, 71569, 17431, 1; %e A300785 n=7: 1, 30157, 139861, 241753, 241753, 139861, 30157, 1; %e A300785 n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1; %p A300785 T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # _Muniru A Asiru_, Dec 14 2018 %t A300785 T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[ %t A300785 Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From _Kolosov Petro_, Apr 12 2020 *) %o A300785 (PARI) t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1 %o A300785 trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print("")) %o A300785 /* Print initial 9 rows of triangle as follows */ trianglerows(9) %o A300785 (Magma) /* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // _Bruno Berselli_, Mar 21 2018 %o A300785 (Sage) [[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # _G. C. Greubel_, Dec 14 2018 %o A300785 (GAP) T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # _G. C. Greubel_, Dec 14 2018 %Y A300785 Various cases of L(m, n, k): A287326 (m=1), A300656 (m=2), This sequence (m=3). See comments for L(m, n, k). %Y A300785 Row sums give A258806. %Y A300785 Cf. A000584, A287326, A007318, A077028, A294317, A068236, A300656, A302971, A304042, A001015, A094053, A258808, A024005, A316387. %K A300785 nonn,tabl,easy %O A300785 0,5 %A A300785 _Kolosov Petro_, Mar 12 2018