cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300789 Heinz numbers of integer partitions whose Young diagram can be tiled by dominos.

This page as a plain text file.
%I A300789 #11 May 22 2018 21:18:41
%S A300789 1,3,4,7,9,10,12,13,16,19,21,22,25,27,28,29,34,36,37,39,40,43,46,48,
%T A300789 49,52,53,55,57,61,62,63,64,70,71,75,76,79,81,82,84,85,87,88,89,90,91,
%U A300789 94,100,101,107,108,111,112,113,115,116,117,118,121,129,130,131
%N A300789 Heinz numbers of integer partitions whose Young diagram can be tiled by dominos.
%C A300789 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A300789 This sequence is conjectured to be the Heinz numbers of integer partitions in which the odd parts appear as many times in even as in odd positions.
%H A300789 Alois P. Heinz, <a href="/A300789/b300789.txt">Table of n, a(n) for n = 1..20000</a>
%H A300789 Solomon W. Golomb, <a href="https://doi.org/10.1016/S0021-9800(66)80033-9">Tiling with polyominoes</a>, Journal of Combinatorial Theory, 1-2 (1966), 280-296.
%H A300789 Wikipedia, <a href="https://en.wikipedia.org/wiki/Domino_tiling">Domino tiling</a>
%e A300789 Sequence of integer partitions whose Young diagram can be tiled by dominos begins: (), (2), (11), (4), (22), (31), (211), (6), (1111), (8), (42), (51), (33), (222), (411).
%p A300789 a:= proc(n) option remember; local k; for k from 1+
%p A300789       `if`(n=1, 0, a(n-1)) while (l-> add(`if`(l[i]::odd,
%p A300789        (-1)^i, 0), i=1..nops(l))<>0)(sort(map(i->
%p A300789        numtheory[pi](i[1])$i[2], ifactors(k)[2]))) do od; k
%p A300789     end:
%p A300789 seq(a(n), n=1..100);  # _Alois P. Heinz_, May 22 2018
%t A300789 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A300789 Select[Range[100],Total[(-1)^Flatten[Position[primeMS[#],_?OddQ]]]===0&] (* Conjectured *)
%Y A300789 Cf. A000712, A000898, A001405, A004003, A045931, A097613, A099390, A299926, A300056, A300060, A300787, A300788, A304662.
%K A300789 nonn
%O A300789 1,2
%A A300789 _Gus Wiseman_, Mar 12 2018