cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300792 Number of ways to write n as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x or y or z is a square and 9*x^2 + 16*y^2 + 24*z^2 is also a square.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 2, 2, 2, 6, 2, 3, 5, 1, 4, 1, 5, 7, 4, 5, 1, 5, 2, 1, 9, 6, 5, 3, 4, 7, 2, 2, 6, 7, 3, 5, 7, 4, 4, 6, 6, 4, 5, 3, 9, 4, 2, 1, 4, 11, 5, 9, 5, 6, 4, 1, 9, 7, 3, 6, 5, 4, 4, 2, 14, 4, 6, 5, 2, 8, 2, 7, 9, 5, 5, 4, 3, 8, 1, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 12 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 1, 3, 6, 14, 21, 24, 56, 79, 119, 143, 248, 301, 383, 591, 728, 959, 1223, 1751, 2311, 6119.
Conjecture 2: Any positive integer n can be written as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x or y or z is a square and 36*x^2 + 40*y^2 + 45*z^2 is also a square.
See also A300791 for a similar conjecture.

Examples

			a(6) = 1 since 6 = 1^2 + 1^2 + 0^2 + 2^2 with 1 = 1^2 and 9*1^2 + 16*1^2 + 24*0^2 = 5^2.
a(14) = 1 since 14 = 1^2 + 0^2 + 3^2 + 2^2 with 1 = 1^2 and 9*1^2 + 16*0^2 + 24*3^2 = 15^2.
a(728) = 1 since 728 = 10^2 + 0^2 + 12^2 + 22^2 with 0 = 0^2 and 9*10^2 + 16*0^2 + 24*12^2 = 66^2.
a(959) = 1 since 959 = 25^2 + 18^2 + 3^2 + 1^2 with 25 = 5^2 and 9*25^2 + 16*18^2 + 24*3^2 = 105^2.
a(1751) = 1 since 1751 = 19^2 + 25^2 + 18^2 + 21^2 with 25 = 5^2 and 9*19^2 + 16*25^2 + 24*18^2 = 145^2.
a(2311) = 1 since 2311 = 1^2 + 41^2 + 23^2 + 10^2 with 1 = 1^2 and 9*1^2 + 16*41^2 + 24*23^2 = 199^2.
a(6119) = 1 since 6119 = 1^2 + 5^2 + 3^2 + 78^2 with 1 = 1^2 and 9*1^2 + 16*5^2 + 24*3^2 = 25^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[(SQ[x]||SQ[y]||SQ[z])&&SQ[9x^2+16y^2+24z^2]&&SQ[n-x^2-y^2-z^2],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,0,Sqrt[n-1-x^2-y^2]}];tab=Append[tab,r],{n,1,80}];Print[tab]