cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300794 Least number k that is expressible as the sum of 2 abundant numbers in n ways.

Original entry on oeis.org

24, 36, 48, 66, 60, 84, 90, 96, 108, 126, 120, 150, 144, 174, 168, 364, 180, 234, 392, 228, 216, 252, 240, 294, 264, 288, 330, 342, 312, 300, 336, 402, 390, 372, 700, 396, 360, 450, 408, 432, 848, 522, 456, 492, 420, 558, 546, 516, 594, 504, 480, 552, 642, 540
Offset: 1

Views

Author

Paolo P. Lava, Mar 13 2018

Keywords

Examples

			a(1) = 24 = 12 + 12;
a(2) = 36 = 12 + 24 = 18 + 18;
a(3) = 48 = 12 + 36 = 18 + 30 = 24 + 24;
a(4) = 66 = 12 + 54 = 18 + 48 = 24 + 42 = 30 + 36,
etc.
		

Crossrefs

Cf. A005101.

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, b, i, j, n, v; v:=array(1..10^4);
    for n from 1 to 10^4 do v[n]:=0; od; a:=0;
    for n from 1 to q do b:=0; for i from 1 to trunc(n/2) do
    if sigma(i)>2*i and sigma(n-i)>2*(n-i) then b:=b+1; fi; od;
    if b=a+1 then a:=b; print(n); j:=1;
    while v[b+j]>0 do a:=b+j; print(v[b+j]); j:=j+1; od; else if b>a+1 then
    if v[b]=0 then v[b]:=n; fi; fi; fi; od; end: P(10^6);
  • Mathematica
    a[n_] := Block[{t=0, lim=0, ab={}}, While[t == 0, ab = Join[ab, Select[ Range[lim, lim + 499], DivisorSigma[1, #] > 2 # &]]; t = SelectFirst[ Range[lim, lim + 499], Length[ IntegerPartitions[#, {2}, ab]] == n &, 0]; lim += 500]; t]; Array[a, 54] (* Giovanni Resta, Mar 14 2018 *)