cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300807 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A300807 #4 Mar 13 2018 07:52:08
%S A300807 8,108,1004,9504,90980,872495,8363710,80174942,768542846,7367167560,
%T A300807 70620793761,676962861970,6489288003156,62205568978236,
%U A300807 596295430879394,5716019441254447,54793105139432783,525240405862663157
%N A300807 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C A300807 Column 4 of A300811.
%H A300807 R. H. Hardin, <a href="/A300807/b300807.txt">Table of n, a(n) for n = 1..210</a>
%F A300807 Empirical: a(n) = 9*a(n-1) +14*a(n-2) -85*a(n-3) +32*a(n-4) +173*a(n-5) -538*a(n-6) +239*a(n-7) -314*a(n-8) -582*a(n-9) +2609*a(n-10) -6135*a(n-11) +4425*a(n-12) +6902*a(n-13) -11546*a(n-14) +11819*a(n-15) -2599*a(n-16) +5573*a(n-17) +2416*a(n-18) -3913*a(n-19) -7952*a(n-20) -4866*a(n-21) -3412*a(n-22) -9217*a(n-23) -2122*a(n-24) +464*a(n-25) +4111*a(n-26) +2278*a(n-27) +158*a(n-28) +2257*a(n-29) +148*a(n-30) -1659*a(n-31) +32*a(n-32) +273*a(n-33) -349*a(n-34) +47*a(n-35) +134*a(n-36) -32*a(n-37) -20*a(n-38) +9*a(n-39) -a(n-40)
%e A300807 Some solutions for n=5
%e A300807 ..0..1..1..0. .0..0..1..0. .0..0..1..0. .0..1..1..0. .0..0..1..1
%e A300807 ..1..0..0..1. .0..0..1..1. .0..1..0..0. .0..0..1..0. .0..1..0..1
%e A300807 ..1..1..0..0. .1..0..0..0. .1..0..1..1. .0..1..0..1. .1..1..0..0
%e A300807 ..1..0..1..1. .1..1..1..1. .1..1..1..1. .0..1..0..0. .0..1..1..0
%e A300807 ..1..0..1..1. .1..0..0..0. .0..0..1..0. .0..0..1..1. .0..1..0..1
%Y A300807 Cf. A300811.
%K A300807 nonn
%O A300807 1,1
%A A300807 _R. H. Hardin_, Mar 13 2018