A300812 Irregular triangle T(n,c) read by rows: the number of clusters of n spheres centered on f.c.c. lattice sites with c contacts.
1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 13, 4, 2, 1, 0, 0, 0, 0, 75, 35, 16, 3, 2, 0, 0, 0, 0, 0, 557, 384, 184, 54, 24, 5, 2, 1, 0, 0, 0, 0, 0, 0, 4808, 4230, 2354, 834, 355, 104, 37, 9, 2, 1, 0, 0, 0, 0, 0, 0, 0, 44334, 47328, 30517, 13081, 5716, 2083, 749, 253, 70, 20, 4, 3
Offset: 1
Examples
The values T(n,c) start with n=1 sphere for 0 <= c contacts as: 1 0 1 0 0 3 1 0 0 0 13 4 2 1 0 0 0 0 75 35 16 3 2 0 0 0 0 0 557 384 184 54 24 5 2 1 0 0 0 0 0 0 4808 4230 2354 834 355 104 37 9 2 1 0 0 0 0 0 0 0 44334 47328 30517 13081 5716 2083 749 253 70 20 4 3 T(2,1) = 1 because there is one cluster with two spheres which touch each other at one point: (0,0,0), (1/2,0,1/2). T(3,2) = 3 counts three spheres in three different geometries: (i) (0,0,0), (1/2,1/2,0), (1,0,1), linear, (ii) (0,0,0), (1/2,1/2,0), (1,1,0) with 90-degree bond angle, (iii) (0,0,0), (1/2,1/2,0), (1,1/2,1/2) with 120-degree bond angle. T(3,3) = 1 counts the planar triangular canonball base arrangement: (0,0,0), (1/2,1/2,0), (1/2,0,1/2).
Links
- R. J. Mathar, Illustration for geometries of clusters of 4 and 5 atoms(2018)
Comments