cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300833 Filter sequence combining A300830(n), A300831(n) and A300832(n), three products formed from such proper divisors d of n for which mu(n/d) = 0, +1 or -1 respectively, where mu is Möbius mu function (A008683).

This page as a plain text file.
%I A300833 #25 Jan 19 2019 04:15:43
%S A300833 1,2,2,3,2,4,2,5,6,7,2,8,2,9,10,11,2,12,2,13,14,15,2,16,17,18,19,20,2,
%T A300833 21,2,22,23,24,25,26,2,27,28,29,2,30,2,31,32,33,2,34,35,36,37,38,2,39,
%U A300833 28,40,41,42,2,43,2,44,45,46,47,48,2,49,50,51,2,52,2,53,54,55,56,57,2,58,59,60,2,61,62,63,64,65,2,66,67,68,69,70
%N A300833 Filter sequence combining A300830(n), A300831(n) and A300832(n), three products formed from such proper divisors d of n for which mu(n/d) = 0, +1 or -1 respectively, where mu is Möbius mu function (A008683).
%C A300833 Restricted growth sequence transform of triple [A300830(n), A300831(n), A300832(n)].
%C A300833 For all i, j:
%C A300833   a(i) = a(j) => A293215(i) = A293215(j) => A001065(i) = A001065(j).
%C A300833   a(i) = a(j) => A051953(i) = A051953(j).
%C A300833   a(i) = a(j) => A295885(i) = A295885(j).
%C A300833 Apparently this is also the restricted growth sequence transform of ordered pair [A300831(n), A300832(n)], which is true if it holds that whenever we have A300831(i) = A300831(j) and A300832(i) = A300832(j) for any i, j, then also A300830(i) = A300830(j). This has been checked for the first 65537 terms.
%H A300833 Antti Karttunen, <a href="/A300833/b300833.txt">Table of n, a(n) for n = 1..65537</a>
%e A300833 a(39) = a(55) (= 28) as A300830(39) = A300830(55) = 1, A300831(39) = A300831(55) = 2 and A300832(39) = A300832(55) = 420.
%o A300833 (PARI)
%o A300833 allocatemem(2^30);
%o A300833 up_to = 65537;
%o A300833 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A300833 write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
%o A300833 A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
%o A300833 A300830(n) = { my(m=1); fordiv(n,d,if(!moebius(n/d),m *= A019565(d))); m; };
%o A300833 A300831(n) = { my(m=1); fordiv(n,d,if((d < n)&&(1==moebius(n/d)), m *= A019565(d))); m; };
%o A300833 A300832(n) = { my(m=1); fordiv(n,d,if(-1==moebius(n/d), m *= A019565(d))); m; };
%o A300833 Aux300833(n) = [A300830(n), A300831(n), A300832(n)];
%o A300833 write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300833(n))),"b300833.txt");
%Y A300833 Cf. A019565, A051953, A300831, A300832.
%Y A300833 Cf. also A293214, A293215, A293226, A295885, A300825.
%K A300833 nonn
%O A300833 1,2
%A A300833 _Antti Karttunen_, Mar 16 2018