A300844 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or 2*y or z is a square and (12*x)^2 + (21*y)^2 + (28*z)^2 is also a square.
1, 4, 4, 2, 5, 6, 2, 2, 4, 5, 7, 1, 3, 7, 2, 3, 5, 7, 7, 2, 6, 1, 2, 2, 2, 11, 7, 3, 3, 8, 5, 1, 4, 5, 9, 4, 6, 8, 6, 4, 7, 9, 3, 3, 2, 9, 2, 1, 3, 6, 16, 5, 9, 7, 6, 5, 1, 5, 9, 4, 4, 7, 5, 5, 5, 17, 6, 4, 7, 3, 6, 3, 6, 11, 11, 4, 3, 1, 8, 2, 6
Offset: 0
Keywords
Examples
a(11) = 1 since 11 = 0^2 + 1^2 + 1^2 + 3^2 with 0 = 0^2 and (12*0)^2 + (21*1)^2 + (28*1)^2 = 35^2. a(56) = 1 since 56 = 4^2 + 6^2 + 2^2 + 0^2 with 4 = 2^2 and (12*4)^2 + (21*6)^2 + (28*2)^2 = 146^2. a(77) = 1 since 77 = 4^2 + 0^2 + 5^2 + 6^2 with 4 = 2^2 and (12*4)^2 + (21*0)^2 + (28*5)^2 = 148^2. a(184) = 1 since 184 = 12^2 + 2^2 + 0^2 + 6^2 with 0 = 0^2 and (12*12)^2 + (21*2)^2 + (28*0)^2 = 150^2. a(599) = 1 since 599 = 21^2 + 11^2 + 1^2 + 6^2 with 1 = 1^2 and (12*21)^2 + (21*11)^2 + (28*1)^2 = 343^2. a(7836) = 1 since 7836 = 38^2 + 18^2 + 68^2 + 38^2 with 2*18 = 6^2 and (12*38)^2 + (21*18)^2 + (28*68)^2 = 1994^2. a(15096) = 1 since 15096 = 16^2 + 6^2 + 52^2 + 110^2 with 16 = 4^2 and (12*16)^2 + (21*6)^2 + (28*52)^2 = 1474^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[(SQ[x]||SQ[2y]||SQ[z])&&SQ[(12x)^2+(21y)^2+(28z)^2]&&SQ[n-x^2-y^2-z^2],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];tab=Append[tab,r],{n,0,80}]
Comments