cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300862 Solution to 1 = Sum_y Product_{k in y} a(k) for each n > 0, where the sum is over all integer partitions of n with an odd number of parts.

Original entry on oeis.org

1, 1, 0, 0, -1, -1, 0, 1, 1, 0, -2, -3, -2, 2, 7, 6, -3, -15, -19, -2, 32, 54, 24, -64, -153, -123, 95, 389, 444, -43, -966, -1475, -516, 2066, 4414, 3092, -3874, -12480, -12936, 3847, 32445, 45494, 8950, -77282, -147663, -86313, 157456, 435623, 399041, -229616, -1211479, -1535700, -73132
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1-Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Array[a,40]