This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300867 #15 Oct 28 2024 16:24:12 %S A300867 1,1,1,3,1,1,3,3,1,1,1,3,3,5,3,11,1,1,1,7,1,1,3,3,3,13,5,3,3,5,11,11, %T A300867 1,1,1,39,1,1,7,7,1,1,1,3,3,13,3,7,3,21,13,23,5,5,3,3,3,9,5,11,11,9, %U A300867 11,43,1,1,1,35,1,1,39,15,1,1,1,31,7,57,7,7,1 %N A300867 a(n) is the least positive k such that k * n is a Fibbinary number (A003714). %C A300867 This sequence is well defined: for any positive n, according to the pigeonhole principle, A195156(i) mod n = A195156(j) mod n for some distinct i and j, hence n divides f = abs(A195156(i) - A195156(j)), and as f is a Fibbinary number, a(n) <= f/n. %C A300867 All terms are odd. %H A300867 Rémy Sigrist, <a href="/A300867/b300867.txt">Table of n, a(n) for n = 0..10000</a> %H A300867 Rémy Sigrist, <a href="/A300867/a300867.png">Colored logarithmic scatterplot of the first 1000000 terms</a> (where the color is function of A070939(n * a(n))) %F A300867 a(n) = A300889(n) / n for any n > 0. %F A300867 a(2*n) = a(n). %F A300867 a(n) = 1 iff n belongs to A003714. %e A300867 The first terms, alongside the binary representation of n * a(n), are: %e A300867 n a(n) bin(n * a(n)) %e A300867 -- ---- ------------- %e A300867 0 1 0 %e A300867 1 1 1 %e A300867 2 1 10 %e A300867 3 3 1001 %e A300867 4 1 100 %e A300867 5 1 101 %e A300867 6 3 10010 %e A300867 7 3 10101 %e A300867 8 1 1000 %e A300867 9 1 1001 %e A300867 10 1 1010 %e A300867 11 3 100001 %e A300867 12 3 100100 %e A300867 13 5 1000001 %e A300867 14 3 101010 %e A300867 15 11 10100101 %e A300867 16 1 10000 %e A300867 17 1 10001 %e A300867 18 1 10010 %e A300867 19 7 10000101 %e A300867 20 1 10100 %o A300867 (PARI) a(n) = forstep (k=1, oo, 2, if (bitand(k*n, 2*k*n)==0, return (k))) %Y A300867 Cf. A003714, A070939, A195156, A300889. %K A300867 nonn,look,base %O A300867 0,4 %A A300867 _Rémy Sigrist_, Mar 14 2018