This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300905 #21 Apr 06 2025 19:55:37 %S A300905 0,8,17,1978,73,0,1570497,1009588832,7390478182,1391503283200, %T A300905 166394893969,151448237549551616,762517292682713,18685202394240778240, %U A300905 814227337406354049,187036938412352867328077,947615093635545799201,2095989269871299377743863001 %N A300905 a(n) = n^sigma(n) mod sigma(n)^n. %C A300905 sigma(n) = the sum of the divisors of n (A000203). %C A300905 n^sigma(n) > sigma(n)^n for all n > 2. %F A300905 a(n) = A100879(n) mod A217872(n). %F A300905 a(n) = 0 for numbers n in A300906. %F A300905 If n is a k-perfect number from A007691, then a(n) = 0 iff k divides n. %e A300905 For n = 6; a(6) = 0 because 6^sigma(6) mod sigma(6)^6 = 6^12 mod 12^6 = 2176782336 mod 2985984 = 0. %p A300905 with(numtheory): seq(n &^ sigma(n) mod sigma(n)^n,n=1..20); # _Muniru A Asiru_, Mar 20 2018 %t A300905 Array[With[{s = DivisorSigma[1, #]}, PowerMod[#, s, s^#]] &, 18] (* _Michael De Vlieger_, Mar 16 2018 *) %o A300905 (Magma) [n^SumOfDivisors(n) mod SumOfDivisors(n)^n: n in[1..20]]; %o A300905 (PARI) a(n) = my(s=sigma(n)); lift(Mod(n, s^n)^s); \\ _Michel Marcus_, Mar 17 2018 %o A300905 (GAP) List([1..20],n->PowerModInt(n,Sigma(n),Sigma(n)^n))); # _Muniru A Asiru_, Mar 20 2018 %Y A300905 Cf. A000203, A007691, A100879, A217872, A300906. %K A300905 nonn %O A300905 1,2 %A A300905 _Jaroslav Krizek_, Mar 14 2018