This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300906 #20 Apr 06 2025 19:55:46 %S A300906 1,6,28,84,120,364,420,496,672,840,1080,1320,1488,1782,2280,2760,3276, %T A300906 3360,3472,3480,3720,3780,5640,7080,7392,7440,7560,8128,8736,9240, %U A300906 9480,10416,10920,11880,12400,15456,15960,16368,16380,17880,18360,18600,19320,20520 %N A300906 Numbers k such that sigma(k)^k divides k^sigma(k). %C A300906 Numbers k such that A217872(k) divides A100879(k). %C A300906 Numbers k such that A300905(k) = 0. %C A300906 Corresponding quotients: 1, 729, 123476695691247935826229781856256, ... %C A300906 m-perfect numbers k (A007691) are terms iff m divides k. %e A300906 6 is a term because 6^sigma(6) / sigma(6)^6 = 6^12 / 12^6 = 2176782336 / 2985984 = 729 (integer). %p A300906 with(numtheory): %p A300906 select(n->n &^ sigma(n) mod sigma(n)^n =0, [`$`(1..30000)]); # _Muniru A Asiru_, Mar 20 2018 %o A300906 (Magma) [n: n in[1..20000] | n^SumOfDivisors(n) mod SumOfDivisors(n)^n eq 0]; %o A300906 (GAP) Filtered([1..30000],n->PowerModInt(n,Sigma(n),Sigma(n)^n)=0); # _Muniru A Asiru_, Mar 20 2018 %o A300906 (PARI) isok(n) = my(s = sigma(n)); Mod(n, s^n)^s == 0; \\ _Michel Marcus_, Mar 23 2018 %Y A300906 Cf. A000203, A100879, A217872, A300905. %K A300906 nonn %O A300906 1,2 %A A300906 _Jaroslav Krizek_, Mar 20 2018