This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300910 #7 Mar 27 2019 03:51:31 %S A300910 1,0,2,15,116,1070,11754,149436,2145296,34193736,598061160, %T A300910 11377384920,233732130312,5153974126704,121354505626704, %U A300910 3037419444974040,80497938647953920,2251124265581428800,66225476356207660224,2044005966844402035456,66025689709572751040640,2227221130525199246067840,78301158190416233445985920 %N A300910 Expansion of e.g.f. 1/(1 - x)^(x/(1 - x)^2). %C A300910 Exponential transform of A006675. %H A300910 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A300910 E.g.f.: A(x) = exp(B(x)*C(x)), where B(x) is the g.f. of the sequence {0, 1, 2, 3, 4, 5, ...} and C(x) is the g.f. of the sequence {0, 1, 1/2, 1/3, 1/4, 1/5, ...}. %F A300910 a(0) = 1; a(n) = Sum_{k=1..n} k*k!*(H(k)-1)*binomial(n-1,k-1)*a(n-k), where H(k) is the k-th harmonic number. %e A300910 1/(1 - x)^(x/(1 - x)^2) = 1 + 2*x^2/2! + 15*x^3/3! + 116*x^4/4! + 1070*x^5/5! + 11754*x^6/6! + 149436*x^7/7! + ... %p A300910 a:=series(1/(1-x)^(x/(1-x)^2),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # _Paolo P. Lava_, Mar 26 2019 %t A300910 nmax = 22; CoefficientList[Series[1/(1 - x)^(x/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]! %t A300910 a[n_] := a[n] = Sum[k k! (HarmonicNumber[k] - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}] %Y A300910 Cf. A000254, A001705, A006675, A027611, A027612, A087761, A300491. %K A300910 nonn %O A300910 0,3 %A A300910 _Ilya Gutkovskiy_, Mar 15 2018