This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300912 #41 Jan 04 2021 12:12:31 %S A300912 4,6,10,14,15,22,26,33,34,35,38,46,51,55,58,62,69,74,77,82,85,86,93, %T A300912 94,95,106,118,119,122,123,134,141,142,143,145,146,155,158,161,166, %U A300912 177,178,187,194,201,202,205,206,209,214,215,217,218,219,221,226,249 %N A300912 Numbers of the form prime(x)*prime(y) where x and y are relatively prime. %H A300912 Andrew Howroyd, <a href="/A300912/b300912.txt">Table of n, a(n) for n = 1..10000</a> %e A300912 The sequence of all relatively prime pairs (columns) begins: %e A300912 1 1 1 1 2 1 1 2 1 3 1 1 2 3 1 1 2 1 4 1 3 1 2 1 3 %e A300912 1 2 3 4 3 5 6 5 7 4 8 9 7 5 10 11 9 12 5 13 7 14 11 15 8 %t A300912 Select[Range[100],And[PrimeOmega[#]==2,GCD@@PrimePi/@If[#==1,{},FactorInteger[#]][[All,1]]==1]&] %t A300912 With[{nn=40},Join[{4},Take[Prime[#[[1]]]Prime[#[[2]]]&/@Select[Subsets[ Range[ nn],{2}],CoprimeQ@@#&]//Union,Floor[Prime[nn]/2]]]] (* _Harvey P. Dale_, Jan 04 2021 *) %o A300912 (PARI) ok(n)={my(f=factor(n)); bigomega(f)==2 && gcd(apply(primepi, f[,1]))==1} \\ _Andrew Howroyd_, Oct 26 2018 %Y A300912 Cf. A001358, A000837, A001221, A001222, A006881, A289508, A289509, A318990. %K A300912 nonn %O A300912 1,1 %A A300912 _Gus Wiseman_, Sep 06 2018