cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300931 a(n) is the number of Klein four orbits of permutations generated by the operations of inverse permutation and conjugation by w_0 = [n, n-1, ..., 1].

This page as a plain text file.
%I A300931 #27 May 19 2020 06:28:42
%S A300931 1,1,2,4,13,45,230,1388,10558,92126,912908,9998008,119831996,
%T A300931 1557050972,21795929320,326923928048,5230723155848,88921965504136,
%U A300931 1600593971537552,30411277553507360,608225514852464848,12772735603832679248,281000182274281641056
%N A300931 a(n) is the number of Klein four orbits of permutations generated by the operations of inverse permutation and conjugation by w_0 = [n, n-1, ..., 1].
%H A300931 Alois P. Heinz, <a href="/A300931/b300931.txt">Table of n, a(n) for n = 0..450</a>
%F A300931 a(n) = (n! + (2*floor(n/2))!! + 2 + 2*Sum_{k=1..floor(n/2)} (Product_{j=0..k-1} binomial(n-2j,2))/k!)/4.
%F A300931 For n > 1, a(n) = (n! + (2*floor(n/2))!!)/4 + A001475(n-1). - _Vaclav Kotesovec_, May 19 2020
%e A300931 For n=3, the a(3)=4 orbits are {(1,2,3)}, {(1,3,2),(2,1,3)}, {(2,3,1),(3,1,2)}, and {(3,2,1)}.
%p A300931 a:= proc(n) option remember; `if`(n<6, [1$2, 2, 4, 13, 45][n+1],
%p A300931       ((15*n^2+11*n-161)*a(n-1)-(19*n^2-100*n+65)*a(n-2)
%p A300931        -(30*n^3-87*n^2-81*n+266)*a(n-3)+68*(n-2)*(n-3)^2*a(n-4)
%p A300931        +(n-3)*(n-4)*(15*n^2-23*n-16)*a(n-5)-2*(17*n-33)*(n-3)*
%p A300931        (n-4)*(n-5)*a(n-6))/(15*n-38))
%p A300931     end:
%p A300931 seq(a(n), n=0..35);  # _Alois P. Heinz_, Mar 30 2018
%t A300931 Table[(n! + (2 Floor[n/2])!! + 2 + 2 Sum[Product[Binomial[n - 2 j, 2], {j, 0, k - 1}]/k!, {k, Floor[n/2]}])/4, {n, 22}] (* _Michael De Vlieger_, Mar 16 2018 *)
%t A300931 Table[(n! + (2*Floor[n/2])!!)/4 + I^(1 - n) * 2^((n - 3)/2) * HypergeometricU[(1 - n)/2, 3/2, -1/2], {n, 0, 25}] (* _Vaclav Kotesovec_, May 19 2020 *)
%Y A300931 Cf. A001475.
%K A300931 nonn
%O A300931 0,3
%A A300931 _Sara Billey_, Philippe Nadeau, _Jordan Weaver_, Jesse Rivera, Justin Shyi, Mar 15 2018
%E A300931 a(19)-a(22) from _Michael De Vlieger_, Mar 16 2018
%E A300931 a(0)=1 prepended by _Alois P. Heinz_, Mar 30 2018